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Abstract Tracing can be defined as a very fast system-wide fined grained logging mechanism, useful to detect

performance issues in software. Trace tools like LTTng have a very low impact on the traced software as compared

to traditional debuggers. However, for long runs, in resource constrained and high throughput environments, such

as embedded network switching nodes and production servers, the collective tracing impact on the target software

adds up considerably. The overhead is not just in terms of execution time but also in terms of the huge amount of

data to be stored, processed and analyzed offline. This paper presents a novel way of dealing with such huge trace

data generation by introducing a Just-In-Time (JIT) filter based tracing system, for sieving through the flood of

high frequency events, and recording only those that are relevant, when a specific condition is met. With a tiny

filtering cost, the user can filter out most events and focus only on the events of interest. We show that in certain

scenarios, the JIT compiled filters prove to be 3 times more effective than similar interpreted filters. We also show

that, with increasing number of filter predicates and context variables, the benefits of JIT compilation increase with

some JITed filters being even 3x faster then their interpreted counterparts. We further present a new architecture,

using our filtering system, which can enable co-operative tracing between kernel and userspace by sharing data

efficiently. We compared the data access performance on our shared memory system and found an almost 100x

improvement over traditional data sharing for co-operative tracing. We also demonstrate an illustrative use case

in which this shared memory can be used while tracking syscall latency.
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1 Introduction

With the traditional debugging approach, it

becomes quite difficult to gather very low level as

well as time accurate details about the system’s

behavior in quasi real-time or soft real-time sys-

tems. Sampling based profiling tools are also of

limited use in such cases. Therefore, a fast logging

mechanism, called tracing, is employed. Tracing

can be divided according to the functional aspect

(static or dynamic) or by its intended use (kernel

or userspace tracing – also known as tracing do-

mains).

∗Corresponding Author

This work was supported by research grants from Ericsson, EfficiOS, Natural Sciences and Engineering Research Council

of Canada (NSERC) and Prompt Québec
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Tracing usually involves adding special trace-

points in the code. A tracepoint looks like a simple

function call, which can be inserted anywhere in

the code (in the case of userspace applications) or

be provided as part of the standard kernel tracing

infrastructure (tracepoint ‘hooks’ in the Linux ker-

nel). Each tracepoint hit is usually associated with

an event. For instance, the events in Linux kernel

are very low level and occur frequently. Some ex-

amples are syscall entry/exit, scheduling calls, etc.

For userspace applications, these can be any func-

tion call entry in the program. This indeed is a

very efficient way to follow a program execution,

rather than traditional debugging, specially in sce-

narios where the effect of pausing, waiting for user

interaction and collecting data, can alter the be-

havior of a normal execution and yield incorrect re-

sults. Sometimes, the error cannot be reproduced

in normal scenarios, due to the presence of time

dependent errors in programs, which do not arise

systematically or even frequently (for example, a

heisenbug) [1]. For such cases, low overhead, low

disturbance, tracing tools are invaluable.

Tracing involves storing the associated data in

a special buffer whenever an event occurs. For a

detailed execution trace of a very fast system, with

high frequency trace events, this data is huge and

contains precise time-stamps of the tracepoints hit,

along with any optional event-specific information

(value of variables, registers, etc). All this infor-

mation can be stored in a specific format for later

retrieval and analysis. In many cases, the trace

data contains a lot of uninteresting, redundant, in-

formation during normal execution and needlessly

consumes a lot of storage space. There can be

situations where the target system is resource con-

strained, such as an embedded network controller,

where a huge number of trace events can be gen-

erated at very high speed for hundreds of days in

a row [2, 3]. It would be very inefficient to store

all the traced data and try to retrieve it for offline

analysis. In such situations, trace filters can be

used to discard unwanted tracepoints and record

only those specific ones that are of interest. The

trace filters are comprised of multiple filter pred-

icates which essentially are the conditions to be

checked. The predicates are joined together with

boolean operators and form a boolean expression

that returns either a TRUE or FALSE. More about

this will be discussed in later sections.

Most tools employ some form of filtering.

However, as shown in Figure 1, the filtering scheme

used in most state-of-the-art tools is the same – (1)

define the filter predicates in a high level statement

form, (2) create a predicate tree, and possibly a

more efficient bytecode representation, (3) when

the tracepoint is hit, walk the associated predicate

tree while evaluating the conditions, or interpret

the associated bytecode and evaluate the filter out-

come. Another approach, as in Figure 1(c) is to

(Just-In-Time) JIT compile the filter bytecode to

native code and execute it on the machine. This

yields a significant performance improvement as

compared to interpreting the bytecode directly.
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Fig. 1: Overview of filtering in trace and debug con-

text. The bold path (c) is the approach which yields

minimum overhead

Some interesting prototyping results were re-

ported by Alexei Starovoitov. An implementation

of JITed Berkeley Packet Filter (BPF) bytecode to
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kernel tracing demonstrated an improvement from

32ns to 4ns per call (best case scenario) [4]. Along

the same way, we improved tracing performance

using JITed filters by enhancing the state-or-the-

art tracing architecture. It has proven to be more

robust than the current filtered tracing techniques

and has lead to reduced trace storage size, and

hence efficient diagnosis of problems. The bene-

fits of having a very fine control over tracing have

always been important from the developers per-

spective, but the filter computation overhead has

always been a hindrance. In this paper, we present

a new tracing scheme which tries to minimize this

overhead and hence allows a more flexible use of

the JITing technique for other purposes such as

conditional tracing.

We also introduce the concept of co-operative

tracing where, through an efficient sharing mecha-

nism, kernel tracing can be guided from userspace

or vice versa. Important data, such as perfor-

mance counters or kernel-aggregated values, can

be shared between the kernel and userspace filters,

to achieve assisted tracing. For example, in cer-

tain scenarios, where the kernel may be monitoring

syscall latency, the userspace process may provide

hints about the expected normal latency, allow-

ing for the dynamic adjustment of the maximum

latency threshold, used in the kernel latency mon-

itoring tracing filters.

The remainder of the paper is organized as

follows : We start with a discussion on the basic

building blocks of tracing. The techniques such

as static and dynamic code instrumentation, on

which the Linux tracing infrastructure is built, is

explained. We also discuss its relevance in our

context of trace filtering and our new scheme for

kernel-userspace co-operative tracing. We then

explain some commonly used filtering techniques

used in scenarios like in-kernel network packet fil-

tering and see how different tools like DTrace, LT-

Tng and SystemTap approach filtering of traces.

We move on to explain the design of bytecode in-

terpreters relevant for filter design. Subsequently,

JIT compilation techniques and their use in tracing

are discussed. We introduce our proposed method

and architecture for a JIT based optimized trace

filtering framework, its design and its benefits. Its

performance against current interpreted filtering

techniques is evaluated and presented. We move

on to propose our co-operative tracing system as

an extension to the JIT based trace filtering sys-

tem, to achieve high speed kernel-userspace trac-

ing on resource constrained soft-realtime systems.

We discuss how the current bytecode based filter-

ing systems evolve to a generic system, and the

efficient data sharing mechanism that we propose

which yields close to 100x improvements over cur-

rent data sharing mechanisms. We also expose

how this architecture can be used independently,

not just for conditional trace filtering, but for tak-

ing certain actions (like record a trace, aggregate

data, share data with userspace etc.) based on

conditions being met or not. We see how this ar-

chitecture differs from approaches taken by tools

such as DTrace and SystemTap. Finally, the re-

sults from the performance benchmarks, inferences

drawn from the results, and the directions for fu-

ture work are presented.

2 Literature Review

Most of the previous relevant work on filtering

focused on network packets [5] and not on tracing.

McCanne et al. proposed quite early a bytecode

based virtual machine for in-kernel BSD network

packet filtering, called as Berkeley Packet Filter

(BPF). This interpreted technique delivered a per-

formance of up to 20 times faster than the original

tree based designs such as those of the CMU/S-

tanford Packet Filter (CSPF).
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In Pathfinder, Bailey et al. [6] proposed a

new way of specifying filters declaratively. This

reduces the number of times a pattern has to be

evaluated. Engler et al. presented DPF [7] where

they showed an improvement of about 13x to 26x

as compared to Pathfinder’s implementation, due

to the use of native compilation techniques, while

keeping the same declarative language format of

filter description.

BPF in its original format was further im-

proved by Begel et al. in BPF+ [8], where they

performed compiler optimizations to eliminate re-

dundant predicates during filter generation. They

also eventually implemented an elementary JIT

compiler for BPF to improve its performance fur-

ther - similar to what DPF had done with the

Pathfinder’s implementation.

Wu et al. recently proposed Swift [9], a new

and complete packet filtering system based on a

CISC ISA, and a BPF compatible API to simplify

the code specification. They showed up to 3x the

performance of corresponding in-kernel BPF im-

plementations, mainly due to the aggressive use of

SIMD instructions provided by i386 and x86 64.

Very recently, BPF was improved and evolved

into an extended BPF (eBPF) implementation in

the Linux kernel [4] with enhancements to regis-

ter management, bytecode generation and opti-

mizations using a modern compiler infrastructure.

Its architecture was slightly modified to provide

a more versatile in-kernel tiny virtual machine.

This provided some of the foundation work for the

userspace trace filtering and kernel-userspace trac-

ing improvements we propose in this paper.

DTrace [10], originally developed for Solaris,

is a purely script driven tool which consists of

a new language (D language) for defining trace

scripts. The trace scripts get compiled into an in-

termediate format (DIF) and are subsequently ex-

ecuted in DTrace’s own in-kernel virtual machine.

It is now possible to insert probes in userspace

applications but this simply generates an inter-

rupt, and the probe handler still executes in ker-

nel space. For sharing data between probe exe-

cutions, DTrace supports global variables, thread-

level variables and aggregations. Aggregations can

use per-cpu buckets and can thus be incremented

with low overhead, without locking, at high fre-

quency. The actual aggregation, with heavier lock-

ing, is only needed when extracting the aggregated

value, typically at the end. Thread-level storage

also avoids locking. Reentrency could be an is-

sue if DTrace allowed the same thread-level vari-

able to be accessed from normal and from inter-

rupt context. Global variables in DTrace are not

lock protected, and concurrent access can lead to

corruption. Thus, although a very elaborate, pop-

ular and convenient scripting system for tracing

and monitoring, DTrace suffers from several limi-

tations. All scripts execute from kernel space and

the only userspace to kernel interaction is trace-

points in applications generating costly traps. Fur-

thermore, DTrace suffers from scalability problems

and offers limited support for sharing global vari-

ables.

SystemTap has been developed along similar

lines, to gather trace data dynamically. However,

for kernel tracing, SystemTap generates C code to

be compiled as a kernel module and loaded dy-

namically. This differs from the BPF and DTrace

approach of executing bytecode within the kernel

[11]. While this approach, in theory, offers the best

performance with native code, it suffers from the

requirements of needing a full compilation environ-

ment for the target kernel at runtime. SystemTap

scripts can define and use global variables. Those

are automatically read or write locked when ac-

cessed from the scripts, in case the scripts could

be executing concurrently in probe handlers. This

severely limits the scalability in scenarios requir-
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ing data sharing. Furthermore, while probes can

now be hooked to userspace code, this generates

an interrupt and the corresponding scripts execute

in kernel space, just like DTrace. There is thus

no provision for scripts executing in userspace and

sharing data with the kernel. We discuss this fur-

ther in sections 3.4 and 5, where comparisons with

the newer eBPF approach are made.

3 Background

Most tracing tools are built on underlying

mechanisms which deliver different performance

under various scenarios. In terms of performance,

the most important factor across all tools is the

reduced overhead. As each tracepoint execution

incurs some time, this added time can potentially

slow down the normal execution of the software

and yield different results. The goal is therefore

to have negligible overhead, insuring that the be-

havior is the same, with and without tracing. We

now discuss some basic concepts and relevant tech-

niques that many state-of-the-art tracing tools em-

ploy.

3.1 Static Instrumentation

Instrumentation in computing is the process

of adding a certain code in any given application,

with the inserted code snippet performing tasks

related to diagnosing errors, profiling activities or

gathering traces. The piece of code is intended

to run fast and create a minimum overhead. In

may cases, this code can be added statically, where

it is added before compilation – for example, as

a small function call at the trace target function

entry and exit. When compiled with this instru-

mentation, each call to the trace target function

entry and exit will lead to the instrumentation

being run. This static instrumentation can also

be done at compile-time where the code can be

inserted by the compiler backend. An example

is the -finstrument-functions switch for GCC,

which inserts automatically profiling function calls

for every function entry and exit. There are also

other switches like -fno-stack-limit that gener-

ates code to ensure that the stack does not grow

beyond a certain value [12]. Most compilers pro-

vide ways to define such instrumentation code.

The Linux kernel provides manually inserted static

trace points using the TRACE EVENT macro [13]. It

exposes trace hooks on which other kernel tracing

systems can be built upon.

3.2 Dynamic Instrumentation

The other type of instrumentation is dynamic

instrumentation, sometimes also called Dynamic

Binary Instrumentation (DBI). Traditional static

techniques insert code at compile time, and this

inserted code is persistent. Whenever the specific

function is called, the instrumentation code also

runs and incurs some overhead – even when the

developer does not necessarily want the instrumen-

tation code to run. It also limits the instrumenta-

tion to only software for which the code is available

for recompilation. To overcome these limitations,

instrumentation techniques have been developed

to add code to already compiled binaries. Instru-

mentation can either be performed on the binary

residing on disk or by attaching to running pro-

cesses, as when attaching a debugger to a running

process.

Indeed, debuggers like GDB often rely on

different forms of dynamic instrumentation. For

the runtime instrumentation techniques, the back-

bone of all the approaches is the ability to halt

the process, modify its memory, execute code and

rewrite/restore registers. For on-disk dynamic

instrumentation, the ability to load the binary,

parse, disassemble and patch it with instrumen-

tation code is required. Dynamic instrumentation
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tools can be built using the TRAP based approach,

the trampoline approach or a more elaborate JIT

technique.

TRAP Instrumentation This technique is

used in tools such as older Kprobes [14, 15] and

GDB’s normal tracepoints [16, 17]. The target in-

struction in the target function is replaced with

an exception causing instruction (such as int 3

on i386 architecture), and the exception handler

then executes the instrumentation code. Tradi-

tional debuggers use this approach to implement

breakpoints, with the help of debugging calls (such

as ptrace() on Linux) to insert the TRAP and

read the status and content of the debugged pro-

cess.

JIT Instrumentation Other tools like Valgrind

[18] use JIT based techniques. The binary is first

disassembled and converted into an intermediate

representation (IR). The IR is then instrumented

with analysis code (such as the memory analysis

code of memcheck). It is then recompiled back

to the machine code and this instrumented code

is stored in a code-cache. This can then be exe-

cuted on Valgrind’s synthetic CPU. It is much like

interpreting native instrumented instructions in a

process virtual machine [19]. With this scheme,

the tool (Valgrind) has a very good control over

the target executable. However, being very costly,

this is not appropriate for the tracing domain.

Jump-pad Instrumentation Most of the good

instrumentation frameworks such as Dyninst, and

tools like GDB (for fast tracepoints) [20], how-

ever employ the much faster trampoline approach.

Dyninst usually replaces the complete target func-

tion with a patched version in which a jump is

placed at the specified instrumentation point in

the target. This jump transfers the execution to

a trampoline which executes the displaced instruc-

tions from the target function. Then, the stack

is adjusted and the CPU registers are saved on

stack. Finally, a call to the snippet (instrumenta-

tion code) is made. Upon return, the stack is rear-

ranged, the original register state is restored, and

the execution continues. As the execution stream

is not disturbed, and the snippet execution only

incurs some jumps and a few more instructions in-

stead of a costly trap, this process is one of the

fastest instrumentation approaches.

3.3 Applications in Tracing

Static tracing for LTTng, in kernel and

userspace, is implemented using the static instru-

mentation techniques where a tracepoint() call

may be placed anywhere in a function, and with

supporting macros can generate very fast and ac-

curate tracing data [21]. During compilation, this

call gets expanded to an actual tracing function,

according to the tracing context. This is the most

optimum tracing mode. The Linux kernel’s own

tracing infrastructure, ftrace, provides static as

well as dynamic tracing, depending on how it is

used. Other tracing tools like SystemTap pro-

vide dynamic tracing through the use of Kprobes,

Jprobes and Uprobes [22]. SystemTap also uses

Dyninst for userspace tracing to gain some per-

formance as well. The Kprobe approach has been

used extensively to insert instrumentation code in

the non-blacklisted kernel functions. These have

traditionally been TRAP based, but jump-pad

based probes have also been made available re-

cently. Dynamic tracing with LTTng is based on

the kernel’s Kprobe technique.

Irrespective of what technology they are built

upon, activated tracepoints may generate a lot of

data. This motivates the work on filters and how

they can be used to filter out a large fraction of

uninteresting trace data.
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3.4 Filters

Filtering is widely used in computing – from

filter queries supplied to SQL databases to pro-

viding sand-boxed secure execution environments

by filtering out syscalls [23]. The basic idea of a

filter F is to find a small subset S from an large

input set L, given a certain criteria of selection of

the subset. The criteria being that application of

filter F to the each element i of L returns TRUE.

S = {i ∈ L : F (i)}

Where F(x) can be defined as a boolean function

whose outcome depends on the filter predicates

P1, P2..Pn These predicates are the heart of the

filter itself and are joined with boolean operands.

In our tracing context, a filter function F with an

expression E and operators (?) can be defined as

follows,

For every i ∈ L, let

F (i) =


TRUE if E = {P1 ? P2 ? ..Pn}

is TRUE for i

FALSE otherwise

In operating systems and software applications,

the need for filtering is most prominent in net-

work packets. A lot of network traffic on the

system causes packets of various protocols, sizes,

having different source and destination, to pass

through the device and the kernel. A user may

wish to select very specific packets from the in-

coming stream, for example those which are either

of type ARP or TCP/IP, originating from location

SRC and having size less than 1KB. An expression

E for a filter can then be built as follows,

((type = ARP )︸ ︷︷ ︸
P1

OR (type = IP )︸ ︷︷ ︸
P2

)AND

(origin = SRC)︸ ︷︷ ︸
P3

AND (size < 1024)︸ ︷︷ ︸
P4

Continuing with this example, a predicate tree

can be built from this expression. The concept

of building trees and evaluating them for boolean

outcomes has been used before in filters like the

NIT [5] in SunOS and Linux kernel’s internal net-

work packet filter. In their earlier stages, these fil-

ters had a predicate tree walker which walked the

nodes, evaluating them, and eventually reaching a

final decision.

P
1

P
2

P
3

FALSE TRUE

P
4

Fig. 2: The filter CFG representation. Right edge

TRUE and left edge FALSE

ldh[12]
jeq #0x800

jeq #0x805 ld [26]
jeq #SRC

FALSE TRUE

ld len
jlt 0x400

Fig. 3: The filter represented as classic BPF byte-

code CFG

From the seemingly infinite number of pack-

ets being transferred from the device, the predicate

tree formation and walking algorithm requires a

considerable amount of computation to evaluate

each packet. To overcome this, an initial version

of the Berkeley Packet Filter (BPF) introduced a

bytecode interpretation based filtering [5, 24]. A

new control flow graph (CFG) representation of

the example above is shown in Figure 2. The nodes

of the CFG were converted to bytecode as shown

in Figure 3 and interpreted by a small in-kernel
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register based BPF interpreter. At the time of its

introduction in BSD, BPF gave an improvement of

20 times over earlier techniques. This was also ev-

ident in recent patches to the Linux kernel where,

in certain scenarios, BPF based filtering brought

down the filtering costs from 139ns to 32ns [4]. We

now discuss ways to improve this further by tech-

niques such as JIT compiling (JITing) the byte-

code.

Filter Performance Optimizations The

maximum time consumed in VM execution is ac-

tually the cost of instruction dispatch [25, 26].

The computation can be equivalent to a few ma-

chine instructions but the dispatch mechanism

usually takes a maximum of 10 to 12 machine in-

structions and involves a time consuming indirect

branch. The dispatch mechanisms are typically

either of switch or threaded type. To give a short

overview, a switch dispatch may contain a large

switch-case statement where, for each opcode

of the VM, there would be one case statement to

fetch and evaluate the opcode – as discussed in

Figure 1 (b). Then, the next instruction is fetched

and evaluated, as shown in the code snippet in

Listing 1.

Listing 1: Interpreter dispatch for add

while (1) {

switch (instr) {

/* add */

case ADD:

regs[r1] = regs[r2] + regs[r3];

break;

..

The upgraded BPF+ implementation [8] in-

corporated many tiny data-flow optimizations such

as removing redundant predicates from the CFG

during the BPF bytecode generation phase, the

identification of potential lookup tables and the

optimization of register usage etc. The authors

also did an early JIT implementation and con-

verted the bytecode to native code with a sim-

ple register assignment scheme. They obtained a

speedup of up to 6.6x between unoptimized BPF

code and JITed native code in certain scenarios

with a varying number of predicates. As shown in

Listing 2, a simple snippet from the x86 BPF JIT

implementation, from a recent Linux kernel ver-

sion, shows a similar ADD instruction conversion.

Listing 2: JITing the ‘addition’ bytecode

switch (filter[i].code) {

case BPF_S_ALU_ADD_X:

/* add %ebx ,%eax */

EMIT2(0x01 , 0xd8);

break;

case BPF_S_ALU_ADD_K:

if (!K)

break;

if (is_imm8(K))

/* add imm8 ,%eax */

EMIT3(0x83 , 0xc0 , K);

else

/* add imm32 ,%eax */

EMIT1_off32 (0x05 , K);

break;

..

For every bytecode instruction passed to the

switch, instead of interpreting and dispatching

the equivalent operation, this minimal JIT com-

piler emits the x86 opcodes and stores them into a

code cache upon running for the first time. For

the subsequent filter runs, the code is executed

natively from the code cache and bypasses the in-

struction dispatch mechanism (Figure 1 (c)). This

considerably reduces the overhead, as stated be-

fore. The main performance gain by JITing filter

bytecode is achieved when the events occur at a

high frequency, and run long enough, such as in ‘al-

ways on’ systems. We have used a similar principle

for our filtering architecture. Along with micro-

optimizations to the BPF system and the usage

of the fastest tracing approach, we have proposed
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a very fast trace filtering system, as described in

subsequent sections.

3.4.1 Trace Filtering

The need for filtering in tracing tools has been

addressed before in tools such as DTrace and LT-

Tng. Not tracing and storing uninteresting events

becomes a priority when event frequency is high.

Filters are applied in the execution path of each

tracing event. To reduce the overhead, many sys-

tems defer the trace filtering at analysis time.

Trace viewing and analysis frameworks such as

TraceCompass are optimized for performing com-

plex analysis [27]. Cantrill et al. have discussed

the importance of runtime filtering earlier [10].

With a better filtering infrastructure, it is possi-

ble to filter out traces at runtime as well. We now

discuss some trace filtering approaches the have

been used before, and then move on to explain our

filtering design in the next section.

Speculative Tracing DTrace provides a filtered

tracing mechanism called speculative tracing. The

basic idea is to record the trace data tentatively

in a separate speculation buffer, and later de-

cide whether to commit data to the main tracing

buffers or discard it based on checking the data

with speculate() function. An example is shown

in [10] and [28] where the authors describe how a

filtered trace of all functions entries is only com-

mitted if a particular syscall such as ioctl() re-

turns a failure. While it is seen as a runtime fil-

tering approach, the speculation involves writing

the data to the buffer and possibly copying it to

the principal buffer. The DTrace filter execution

architecture itself consists of custom bytecode gen-

eration and interpretation using a small in-kernel

DTrace virtual machine. This predicate condi-

tion interpretation, coupled with the data copies,

makes the overhead of this approach comparable

to that of tools using bytecode interpretation.

LTTng Trace Filtering LTTng works simi-

larly. The expression are converted to bytecode

and then interpreted. We take an example of LT-

Tng User Space Tracer (UST) where a filter is

set on an event. As shown in figure 4, when the

client encounters a filter expression for a specific

userspace event to be enabled, it first parses it us-

ing a custom lexer-parser and then converts it into

a syntax tree.

INSTRUMENTED USERSPACE APPLICATION

LTTng SESSION
DAEMON

Check for Filter

Parse → AST → IR

Generate Bytecode Send Bytecode

Validate → Link → InterpretNew Event

Filtered Events

Fig. 4: The client is responsible for conversion of

a filter expression to the bytecode, which though

lttng-sessiond is sent to the instrumented userspace

application for validation, linking and an eventual in-

terpretation per event

The nodes of the syntax tree are visited and

classified. Then, the intermediate representation

(IR) is generated and a small verification is done

on IR. Currently, there is no support for binary

arithmetic operations, as the trace filtering needs

were very limited. Only logic and comparisons

operations are provided. Also, except for logi-

cal operators, nesting of other operators is not al-

lowed. The IR is checked to ensure that no wild-

card is used in-between string literals and that

only valid operators are used. Then, the bytecode

is generated by traversing the tree in post-order.
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The generated bytecode and data is saved to the

context and transmitted to the session daemon,

lttng-sessiond, which sends the bytecode to the

userspace application targeted for event for filter-

ing. There, the bytecode execution process starts.

First, the bytecode is linked to the target event to

create a bytecode runtime. Next, a range overflow

check for different instruction classes is done and

the bytecode is validated for illegal instructions.

Finally, the bytecode is sent to LTTng’s own fil-

tering virtual machine.

ax

bx

.

.

.

STACK

top

top - 1

Fig. 5: The LTTng interpreter is a stack based with

two registers (ax and bx) aliased to top of stack

LTTng’s interpreter is a hybrid stack / regis-

ter based virtual machine. As seen in figure 5, it

is a stack based VM consisting of two registers ax

and bx aliased to the top of stack. This makes op-

erations easy, just like on register based machines,

as the push and pops are reduced. At the same

time, this gives more flexibility just as for stack

machines. The interpreter is a threaded, instruc-

tion dispatch based interpreter [29, 30], but can

be used as a normal dispatch in scenarios where

compiler support is not available.

Listing 3: LTTng’s machine interpreting a bytecode

OP(FILTER_OP_NE_S64 ):

{

int res;

res = (estack_bx_v != estack_ax_v );

estack_pop(stack , top , ax , bx);

estack_ax_v = res;

next_pc += sizeof(struct binary_op );

PO;

}

Listing 3 shows how the ‘signed not-equal-to’

operator is interpreted. Here, the operation is per-

formed directly using the macros estack bx v and

estack bx a which point to the two values to be

tested on the execution stack. The LTTng inter-

preter is quite efficient in relation to the limited

scope it has (simple filter execution). However, as

we have observed, both by analysis of the source

code and through performance numbers discussed

in section 6.4, further optimization is possible with

the use of JITing, better optimizations in the byte-

code compiler and adding more features (arith-

metic operations) to make it more flexible. The

overhead is within the range of those tools using

bytecode interpretation.

4 Filtered Tracing Architecture

We propose a novel userspace trace filtering

architecture, with an improved overall tracing per-

formance, as compared to available tracing tools.

We choose LTTng and eBPF as the main drivers

for this tracing architecture. We now describe the

underlying framework on which our filtered trace

architecture is based, and present a justification

behind that choice.

4.1 Base Framework

eBPF The idea to convert BPF bytecode to na-

tive code, as discussed in Section 3.4, has been

exploited recently again by Starovoitov for an im-

proved BPF implementation in Linux kernel. The

earlier implementations, also called classic BPF in

the Linux kernel, consisted of two 32 bit registers

– A and K. The conditional branch had two jump

targets JT (jump if true) and JF (jump if false).

There were 32 bit memory slots for filter data. As

the main goal of BPF was packet filtering, there

are dedicated ‘extensions’ where the developer can
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load and store data from packets directly. Keeping

mind the good performance and the simplicity of

BPF, efforts have been ongoing to make it more

generic and modern. The newer version called, ex-

tended BPF (or eBPF) has many improvements.

The instruction set has been changed, and was de-

signed with emphasis on the importance of JIT

and underlying architectures on which it is run.

eBPF now has 10 internal registers and one frame

pointer. The calling convention is similar to cur-

rent architectures, like ARM64 and x86 64, avoid-

ing extra copies in calls [31]. With this calling

convention, the eBPF registers also map one to

one to the x86 64 and other hardware registers.

This simplifies the JIT compiler implementation

as well. As the main target of eBPF is a generic

kernel interpretation framework, it sports a robust

verifier and has a concept of ‘BPF maps’, an ab-

stract data type to share data between the kernel

and userspace. There are various helper functions

as well, and a dedicated bpf() syscall has been

proposed to update and access the maps that the

BPF programs keep on updating. However, for

tracing purposes in userspace, eBPF needs to be

optimized for filtering, so that filtering operations

can directly occur in userspace. Our adaptation

aims to achieve that. Apart from filtering, our ex-

tensions can provide co-operative conditional trac-

ing from userspace.

LTTng The Linux Trace Toolkit next genera-

tion (LTTng) is a very fast and extremely low over-

head tracing tool developed at DORSAL1 . With

a non-activated tracepoint inserted in the code,

it gives near zero impact on the overall execu-

tion of the target application. This distinguishes

LTTng from the other tools, making it an excel-

lent choice for real time applications. Its tracing

technique implements a fast wait-free read-copy-

update (RCU) buffer for storing data from trace-

point execution [32]. Its efficiency and scalability

was demonstrated in various performance compar-

isons. LTTng-UST is the userspace tracing coun-

terpart of LTTng. The major factor for such an

increase in performance is the use of a lock-less

ring buffer in LTTng-UST, as it efficiently man-

ages multiple readers trying to access the same re-

source simultaneously [21]. However, LTTng-UST

still lacks in areas such as providing an improved

dynamic tracing mechanism and an efficient filter-

ing mechanism for userspace tracing. Our contri-

butions also lead to a JIT compiler based byte-

code for LTTng, in addition to its interpreted filter

bytecode, provided by default in userspace. It also

provides a base to add an initial support for JIT

based kernel filtering as well.

Coupled with eBPF’s efficient JITed filtering

technique, LTTng-UST’s fast tracing performance

can lead to a improved overall performance as com-

pared to interpreted approaches used by DTrace

and LTTng’s default interpreter. The design of

our new eBPF based JIT compiler and interpreter

framework, for userspace and kernel trace tracing,

is influenced by the network filtering approach for

which eBPF was originally designed. Our filter-

ing scheme, however, deviates from this network-

centric approach. It aims to provide improved

performance specifically for userspace tracepoint

filtering, and for combined kernel and userspace

tracing. The reach of eBPF usage has also been

extended by allowing LLVM/GCC based backends

to generate very efficient BPF bytecode from a re-

stricted C interface, while maintaining similar per-

formance.

1http://dorsal.polymtl.ca/en
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FILTER
ARGUMENTS

Bytecode Generator

Raw Bytecode

TRACING CONTEXT

Trace Payload

Tracepoint Info

eBPF FORMAT

Interpreter

JIT Support?

eBPF JIT 
Compiler

YES

Native Image

Execute

eBPF LIBRARY

LTTng tracepoint()

TRUE

FALSE

TARGET BINARY

Fig. 6: The architecture of our proposed eBPF based

trace filtering system

The system architecture is shown in Figure 6.

The filter arguments are declared by the user either

manually, in eBPF bytecode, or can be generated

by the LLVM based backend which converts those

simple ‘C’-like expressions in eBPF bytecode. The

filter also needs information about the trace pay-

load and the tracepoint context, this can be ob-

tained from the target binary in which the filter

is run. It can then be fed to our userspace im-

plementation of the eBPF library. The library ei-

ther checks for the JIT support on the architec-

ture on which it is run, or can be configured to

always JIT the bytecode. The JITed code is saved

to a code cache and the filter is run around the

tracepoint() call. As a fallback, the bytecode

could be interpreted if the JIT compilation fails.

We now explain in details the various steps taken

during filtering, in this proposed architecture.

Bytecode Preparation As stated before, there

are 2 ways to provide bytecode to the interpreter

(and for later JITing). In the first mode, the

user specifies the filter by hard-coding the eBPF

opcode macros such as BPF LD IMM64(BPF REG 0,

1), BPF EXIT INSN() etc. in the target program,

or manually assembling bytecodes for an eBPF

program and loading it as shown in Listing 4. This

is useful only when the filter is either small of the

developer is proficient enough to write BPF assem-

bly manually. The other option is to specify the

filter in C and let the recently developed LLVM’s

eBPF backend generate the eBPF bytecode binary.

The compiler converts the eBPF filter, specified in

a restrictive C format, to a binary with a .text

section containing the executable filter eBPF byte-

codes. We implemented a small method to extract

the opcodes from the section and pass it on to

the interpreter or the JIT compiler library. This

approach is beneficial because there is opportunity

for the developer to use optimization routines from

the LLVM tools.

Listing 4: eBPF program for a sample filter

ldd r1 , (0)r1

mov r2 , 42

jeq r1 , r2 goto TRUE

mov r0 , 0

ret

TRUE:

mov r0 , 1

ret

We now discuss some characteristics of the byte-

code itself. As mentioned earlier in Section 4.1 the

newer bytecode of eBPF is closer to native archi-

tectures like the x86. Using a similar format leads

to a more uniform and portable design. The reg-

ister layout is shown in Table 1, derived from the

filter documentation in the kernel [31].
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Table 1: Register mapping for eBPF-x86

eBPF x86 Purpose

R0 rax Return value from function /

exit value from eBPF

R1 rdi First argument

R2 rsi Second argument

R3 rdx Third argument

R4 rcx Fourth argument

R5 r8 Fifth argument

R6 rbx Callee saved

R7 r13 Callee saved

R8 r14 Callee saved

R9 r15 Callee saved

R10 rbp Frame pointer

The R0 register in eBPF is where the exit

value from eBPF programs is stored. Upon eBPF

program return, R0 is set 1 for TRUE and 0 for

FALSE, just as shown in Listing 4. Register R1 is

where the filter context is loaded. For example, the

context is often made available to the target pro-

gram through a structure, filled with arguments

on which filtering is to be performed. These argu-

ments can be the payload fields from the LTTng

tracepoint or, for more complex scenarios, these

values can be obtained at runtime (LTTng’s con-

text such as PID/TID). A pointer to this structure

can be passed in register R1, which is then accessed

as filter context by the eBPF program. In addition,

tracing filters regularly need to compare strings,

since several tracepoint payload fields are format-

ted as strings (e.g., the filename in the open()

syscall). We thus implemented a bpf strcmp()

function which can be called from within the eBPF

code. Such helper functions make eBPF filter pro-

grams more flexible. As discussed later in section

5.3, we used these helper functions to further ex-

tend the filtering system.

Native Code Compilation The main feature

of the system, and the leading reason for improved

performance, is the JITing of the bytecode. The

JIT compiler behavior is illustrated in Listing 2.

The JIT compilation process for this library is

a simple one-to-one JIT, for each instruction (or

group of eBPF instructions) there is a direct trans-

lation to native code instructions. The compiler

backend is non-optimizing. Indeed, the LLVM

clang compiler frontend performs most of the in-

teresting optimizations, before sending the inter-

mediate representation to the bytecode generation

backend. The native code then follows closely the

generated bytecode. For illustrative purposes, in

Listing 5, we explain the machine code compila-

tion for Listing 4 on an x86-64 system.

Listing 5: JITed eBPF program for sample filter

0 push %rbp

1 mov %rsp , %rbp

4 sub $0x228 , %rsp

b mov %rbx , -0x228(%rbp)

12 mov %r13 , -0x220(%rbp)

19 mov %r14 , -0x218(%rbp)

20 mov %r15 , -0x210(%rbp)

27 xor %rax , %rax

29 xor %r13 , %r13

2c mov (%rdi), %rdi

30 mov $x2a , %rsi

3a cmp %rsi , %rdi

3d jz 0x4b

3f mov $0x0 , %rax

49 jmp 0x55

4b mov $0x1 , %rax

55 mov -0x228(%rbp), %rbx

5c mov -0x220(%rbp), %r13

63 mov -0x218(%rbp), %r14

6a mov -0x210(%rbp), %r15

71 leave

72 ret

(1)

(2)

(3)

(4)

(5)

(6)

The compiler first emits some standard in-

structions to build the function preamble (1).

Some variables are allocated on the stack as well
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for later use, and the values of callee saved regis-

ters are saved (2). This is a standard preparation

for a JITed filter binary. eBPF’s R0 and R7 regis-

ters, used as the old A and K registers, are cleared

(3). The filter context value supplied in R1 (rdi)

is loaded and compared with a predefined value

(4). Based on this comparison, 0 or 1 is loaded in

R0 (rax) and a jump to the exit routine is taken

(5). A standard set of bytecodes is also emitted

for the exit, the callee saved registers are restored

and the filter function is exited (6).

Deviating from the Linux kernel’s eBPF ap-

proach, our eBPF library is lighter, and the JIT

compiler faster, by not including support for spe-

cial instructions that perform direct computa-

tions in the kernel on network packet data struc-

tures. Since we do not need the BPF map

data structures, the compiler and interpreter now

being in the userspace, these were removed as

well. Instead, to extend the filtering library to

a generic assisted-tracing library, we propose our

own shared-memory based communication system

between the kernel and userspace eBPFs, as de-

tailed in section 5.3. For filtering, the native code

also supports calls to new helper routines for trac-

ing specific string comparison functions, such as

bpf strcmp. The architecture is kept flexible, so

that other helper functions can be added as de-

sired.

We tested the performance of the filter, and

the filtered tracing architecture, in relation to var-

ious factors such as filter execution speed, and

compared it with the performance of LTTng’s

userspace trace filtering system based on byte-

codes. For practical reasons, because of the limi-

tations of the C pre-processor for defining variable

length argument lists, LTTng’s bytecode filter cur-

rently limits the number of filter predicates to 10,

which limited us for our test cases. However, the

design of eBPF based filters has no such restric-

tions for similar tests. For now, the number of in-

structions that can be executed with eBPF is kept

at 4096, with support for tail-calls so that multiple

filters can be chained as desired. For a similar fil-

ter predicate type, we could filter on 50 predicates

with our design, as compared to 10 with LTTng’s

current interpreted filter, in the tests that we per-

formed. The design of the experiments and our

findings are elaborated in Sections 6 and 6.4.

5 Improved Tracing Infrastructure

In the previous sections, we discussed how

eBPF and LTTng can be used to develop a new

and efficient filtered tracing architecture. We now

explore the use of eBPF to provide a new way

of performing dynamic tracing in the kernel. We

eventually propose and present a new co-operative

kernel-userspace tracing system, which supports

dynamically defining conditional tracing, and a

more efficient data sharing mechanism. We now

briefly describe similar approaches taken by other

tools.

5.1 Dynamic Tracing

Some of the most interesting developments in

the tracing infrastructure has been the ability to

dynamically insert tracing probes and take actions

when those dynamic probes are hit. The dynamic

tracing tools at kernel level are available with dif-

ferent granularity. One of the approaches that has

proven to be very flexible is defining a scripted

tracing language, which is dynamically compiled

at runtime to some IR or bytecode, and then in-

tended to be interpreted in-kernel. Based on the

instructions, certain ‘functions’ or ‘actions’ can be

executed to gather data into buffers, to be read

later from the userspace. Some famous examples

are ProbeVue [33] and DTrace [28]. They provided

scripting languages like D and Vue which would
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be compiled to an intermediate format. For ex-

ample, in the case of DTrace, the D program in-

put (such as the one shown in Listing 6), though

the dtrace command or a userspace application,

would go through the same process of lex-parse to

generate the parse tree, and then be compiled to a

D Intermediate Format (DIF). A visual survey of

the DTrace code reveals that the DTrace compiler

offers very limited optimizations (integer constant

folding and peephole optimization) as compared to

the enhanced optimizations performed in LLVM

for eBPF bytecode.

Listing 6: Sample D script [28]

syscall :: write:entry

/execname == "foo" && uid == 1001/

{

self ->me = 1;

}

This DIF would be compiled by the assembler

to the DIF Object (DIFO) as shown in Listing 7.

Listing 7: The D Script in Listing 6 compiled to a

DIFO [28]

OFF OPCODE INSTRUCTION

00: 25000001 setx DT_INTEGER [0], %r1 ! 0x1

01: 2d050001 stts %r1 , DT_VAR (1280) !

DT_VAR (1280) = "me"

02: 23000001 ret %r1

This is then coupled with data tables (strings

and variables) to form the DTrace Object Format

(DOF) – which is the actual bytecode interpreted

by the in-kernel DTrace VM. The VM is a RISC

machine with a fixed register set. The instruction

length is fixed to 4 bytes. To retrieve values from

the kernel, DTrace provides a driver that com-

municates with a userspace library (which can be

used with other DTrace consumers like lockstat

and intrstat). This is one of the most compre-

hensive dynamic tracing infrastructure available.

However, it requires a custom VM in-kernel, and

the interpretation cost can be high for long running

or badly written scripts. Another approach was

that of SystemTap, where the SystemTap scripts

would be translated to pure C language and then

compiled as kernel modules. These could then be

loaded at runtime in the kernel to provide tracing

support. It eliminates the need for an in-kernel

VM, but the cost of tracepoint executions and data

accesses has been high as compared to other dy-

namic tools [34].

5.2 Data Sharing

Apart from the cost of the tracepoint execu-

tion, the cost of collecting and aggregating data is

an important consideration as well. Most tools em-

ploy a producer-consumer design where the trace

events can send data (producer) to a buffer (ei-

ther in kernel or userspace), and the filled buffers

become available (in userspace) for analysis, stor-

age or display (consumer). Neira-Ayuso et al.

have discussed various kernel-userspace data shar-

ing mechanisms before [35]. For very large data

bandwidth, the best strategy is to minimize the

number of context switches or syscalls. In DTrace,

the libdtrace library is responsible for consum-

ing data retrieved from the buffers at probe exe-

cution. DTrace provides per-CPU buffers in the

kernel that are filled with relevant data. Based on

the ioctl() arguments in the library, an action is

taken on the buffer, such as copying data to the

relevant userspace buffer. LTTng provides very

efficient shared memory per-CPU ring buffers for

one-way sharing of data from userspace to kernel.

With support for Kprobes as well, it is an efficient

dynamic tracing system for the kernel. However,

there is no specific tracing script support in LT-

Tng, for more advanced analysis or aggregation,

as can be done with tools like DTrace. In its cur-

rent form, eBPF allows two-way sharing of data

(in BPF maps) from userspace to kernel, based on
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the bpf syscall. Refer figure 7.

eBPF VM foo_kern.c

foo_kern.bpf

BPF Bytecode

foo_user.c

foo_kern.bpf

BPF Maps

Bytecode

Read Maps

void blk_start_request
(struct request *req)

{
blk_dequeue_request(req);
.
.

}

Kernel Userspace

KPROBE AT:

eBPF LLVM 
Backend

Load

bpf() SYSCALLS

Load

Lookup 
Elements

Fig. 7: An eBPF program in its current form, with

the kernel part (foo kern.c) and a userspace part

(foo user.c). The userspace part uses the bpf()

syscall to load bytecode in the eBPF kernel VM, as

well as reading and updating data in BPF maps

Aggregated or filtered values, stored in hash-

tables or array-maps, can also be accessed and up-

dated directly from within an eBPF program byte-

code, using the BPF CALL instruction and helper

functions, since the program is already in kernel

context. Even though eBPF is efficient and flexi-

ble, as it can be dynamically compiled and be used

to aggregate data, it would benefit from a more ef-

ficient way to transfer data. eBPF itself is not a

complete tracer but an infrastructure upon which

tracers can be built. The main benefit of eBPF

is that it generates dynamically compiled, JITed

code for tracing. With a more efficient data shar-

ing system, used cooperatively with the LTTng

tracing system, it can provide an overall benefit,

in terms of speed as well as flexibility, to scripted

tracing. The resulting system provides a better

tracing infrastructure than offered by currently

available tools. We now discuss our co-operative

tracing approach based on eBPF and LTTng.

5.3 KeBPF and UeBPF Interactions

Now that we have a system to dynamically

execute JIT compiled code in our programs, we

can think beyond just filtering, and make decisions

and take ‘actions’ based on aggregated values, in

kernel as well as userspace. On the kernel side,

this effort is presently ongoing in the form of small

eBPF scripts that can aggregate data and share it

with userspace [36]. Refer to Figure 7. The Ker-

nel eBPF (KeBPF) machine provides access to the

shared values in the form of array-maps or hash

tables using a syscall. The user can decide to per-

form aggregations on the values in hash tables in

kernel and concurrently read them from userspace.

With some effort, eBPF programs can also be

used to take decisions based on remembered state

(e.g., aggregated values). Our implementation of

Userspace eBPF (UeBPF) as a library opens new

possibilities to collaboratively trace and share data

from userspace to kernel and vice-versa.

5.4 Illustrative Use Case

We show the importance of interaction be-

tween KeBPF and UeBPF programs using an ex-

ample. For diagnosing system performance, it

can be beneficial for the user to track the latency

of syscalls issued by a particular userspace pro-

cess. For that, we developed a custom module

where the userspace process registers itself using

some ioctl() and then probe the sys enter and

sys exit trace events along with the time-stamps

for each syscall. We could then compute, for each

syscall, how much time the syscall was taking and

thus track the particular syscall latency. We can

keep track of all syscalls and set a threshold to de-

cide when to record an event or not, based on the

syscall latency threshold. If the elapsed time for a

syscall is more than the threshold, the event can

be recorded, or otherwise be discarded. However,
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the latency threshold should not be the same for

each syscall. It can vary from syscall to syscall

and can vary based on the complexity of the re-

quest and the underlying hardware speed. We can

therefore add specific hooks in the userspace appli-

cation which can specify expected thresholds to the

kernel. These hooks then can be set from within

eBPF programs so that the user can dynamically

change the threshold values even at function gran-

ularity.

On the kernel side, the kernel can share data

with the userspace application to assist it in trac-

ing, based on conditions such as checking if CPUs

have been switched, if we are in a blocking state

while waiting for a device etc. All such process

states can be shared and the process can condi-

tionally decide to trace or not based on these con-

ditions. This requires a fast data sharing mecha-

nism between the KeBPF and UeBPF programs,

for minimum overhead. We therefore implemented

a mmap based shared memory, between kernel and

userspace, so that KeBPF and UeBPF programs

can share data directly. Other approaches, such

a Perf based events and LTTng’s data sharing,

use fast shared memory as well, however only in

the context of tracing data, flowing from the pro-

ducer to the consumer. Also, as discussed before,

SystemTap and DTrace are limited in how vari-

ables can be shared between different probes exe-

cuted in kernel mode, and offer no way of executing

code in userspace and thus for communicating with

such code. DTrace’s buffers are accessible from

the userspace libdtrace library, but this involve

copies from kernel buffers.

Our sharing is between two VMs (KeBPF and

UeBPF). Therefore, there is a direct access to take

decisions on tracing from both sides, right at the

bytecode level. In that context, a shared mem-

ory access enables very efficient communications,

and useful usage scenarios. Coming back to the

example, as shown in Figure 8, we have a process

with PID 42 that registers with our syscall latency

tracker module.

UeBPF FILTER

 reg_pid()

 bpf_set_threshold()

KeBPF FILTER

threshold
proc_state

{predicate}

Kernel Userspace

PID 42Latency Tracker 
Module

latency()

tracepoint()

Shared Mem

threshold
proc_state

Fig. 8: The KeBPF-UeBPF shared memory implemen-

tation showing syscall latency thresholds being set dy-

namically from within a UeBPF filter program

The process contains a UeBPF filter attached

to certain function level hooks in the application

(as discussed before) which calls our implemented

eBPF helper function bpf set threshold(). This

helper function, when called from within the

UeBPF filter, writes the updated threshold for

the given process/syscall in a shared memory

mapped location, shared with KeBPF. This way,

the thresholds can be dynamically adjusted, and

kernel tracing output can be controlled. In addi-

tion to this, the userspace can continually fill the

proc state structure with current process state so

as to control other parts of kernel/userspace trac-

ing. The alternative and default way, as of now, is

to use the bpf() syscall and create/update BPF

maps from userspace. Each bpf() syscall, how-

ever, incurs more cost for the same operation, as

compared to a direct read or write in our shared

memory. In addition, in the default eBPF maps,

each value requires an explicit copy in the kernel

from the userspace, which is avoided in our shared

memory approach.

In our tracing approach, kernel and userspace

scripts are each executed in their respective con-
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text. This enables very fast userspace trac-

ing, avoiding context switches or traps at each

userspace tracepoint. This is the reason behind the

unrivaled performance of the LTTng userspace li-

brary. The excellent communication performance

between userspace and kernel space, enabled by

the shared memory implementation, then opens

up a lot of possibilities, as will be shown in the ex-

periments, because of this high-performance archi-

tecture. There are, however, precautions required

for using this shared memory channel. From the

security point of view, the kernel scripts should

treat appropriately these userspace supplied val-

ues. Furthermore, appropriate synchronization

mechanisms must be used, depending on the ac-

cess protocol.

For single-threaded synchronous access, no

synchronization is required. For instance, a

userspace script, executed from a single-threaded

process, may specify a threshold just before the ap-

plication issues a system call. Upon finishing the

system call, while the application is still blocked, a

kernel script would check if the threshold was ex-

ceeded, in which case it could write a stack dump

to the trace. In this scenario, no synchronization

is needed.

There are several cases where thread-level

storage can also avoid synchronization issues.

Thread-level storage can easily be built using ar-

rays indexed by the thread id, or using similar

mechanisms. One common scenario is aggregating

counts (e.g., number of bytes read, number of pack-

ets received). This could lead to severe scalability

problems if a single global variable protected by a

lock was used. Instead, one variable per thread (or

per core) is typically used and no synchronization

is required. The variables can then be read and

aggregated at the end, once the scripts are deacti-

vated, not being concurrently updated any more.

Alternatively, the variables can be read, even while

they are being incremented, as accesses to aligned,

word-size, variables are atomic.

For shared, concurrently accessed, global vari-

ables, the situation is more problematic. For in-

stance, tracers in probe handlers either avoid any

locking, like LTTng with atomic lockless opera-

tions, or only allow probes in specific contexts

where locking is possible. For example, SystemTap

limits the context where probes can be inserted,

avoiding NMI interrupts for instance, and auto-

matically protects accesses to global variables with

locks. Our implementation currently does not im-

pose any particular access scheme or locking pro-

tocol. The userspace RCU algorithms would be

applicable to a mixed kernel and userspace envi-

ronment, but the current URCU library implemen-

tation would need to be extended to communicate

with a kernel counterpart [32, 37].

Our proposed approach allows a direct link

between two VMs, one in userspace and one in

kernel, to aggregate data, share data with zero

copy overhead, and set filtered tracing and con-

ditional actions for each other. Results and in-

ferences from our performance tests on our shared

memory implementation, for co-operative KeBPF-

UeBPF tracing, are presented in the next section.

6 Experimentation

In order to demonstrate the effectiveness of

the proposed architecture and algorithms, we di-

vide the experimentations into two sets. The first

set focuses on the pure performance of native code

filters, and their performance when tracing is en-

abled with varying parameters. The second set

evaluates how our shared memory implementation

performs as compared to the bpf() syscall based

approach, used by the default in-kernel eBPF im-

plementation.
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6.1 Test Environment

All tests were done on a machine running Fe-

dora 20 with default 64-bit kernel 3.15 and the

eBPF patched kernel 3.17-rc7 for kernel eBPF

tests. We used LTTng v2.6 on our workstation

running an Intel i7-3770 featuring 4 cores, with

hyper-threading disabled, and 16 GB of memory,

for tracing and observing its interpreter perfor-

mance.

6.2 Filter Experiment Set

There are multiple factors on which the trace

filters performance can be measured. The most im-

portant is overhead, which can be defined as the

extra time or effort required to complete a task

when an external factor acts upon a control exper-

imental setup. In terms of tracing/filtering, the

time taken due to the addition of tracing and fil-

tering can be compared to a baseline value (normal

execution time of the target process). This extra

time is the overhead and is the primary measure

of the impact caused by any proposed addition to

the tracing system. To evaluate the performance,

we designed a synthetic benchmark with operator

chaining. As shown in Figure 9, The filter pred-

icates (P1, P2..PN ) are simple string comparisons

connected with a boolean operator (?), which is

usually an AND/OR. The important time mea-

surements for us are the time required to build

and setup the filter (tK), the time to evaluate the

filter (te) and, upon evaluation, the time taken to

execute the tracepoint code (tt). Thus, the total

time relevant for our observations is,

T = tK + te + tt (1)

To evaluate te, we took AND/OR operator chained

predicates, doing string comparisons, and observed

them for a varying number of events, under a bi-

ased condition (the filter always returned TRUE).

Refer Figure 10. This measured the performance

of eBPF JITed vs interpreted and hardcoded fil-

ters, so that we could understand better how the

native compiled filters in userspace were func-

tioning. We then devised another comprehen-

sive test to compare AND/OR chained predicates,

doing string comparisons with varying depth-of-

evaluation (DoE), for a 100 million events run.

Varying the DoE meant that the filter was evalu-

ating to FALSE, and skipping the remaining pred-

icates, after PX predicates. This is the same as

having a filter length equal to the position of the

PX predicate, and the filter evaluating to TRUE.

We varied the DoE from P = 5 to P = 40 with

steps of 5. Refer to Figure 11. In the following

test, we included the tracepoint time factor tt as

well. For this, we used similar tests and varied the

events and the number of predicates, but the filter

was kept biased as TRUE, so that the tracepoint

was called and we could measure tt. This gave us

the total (te + tt), needed to fully characterize our

system. We have neglected tK . The intended use

case is high performance trace filters, with high fre-

quency events observed over long durations. The

preparation time for filters is thus amortized over a

large number of executions, and is negligible under

such conditions.

var0 == “str0” var1 == “str1” varN == “strN” Tracepoint

t
e  
(FALSE)

t
e  
(TRUE)

t
t

t
K

P
0

P
1

P
N

FALSE

TRUE

P
X

Depth of Evaluation (DoE)

Fig. 9: Our trace filter test design

In this same experiment, we compared the

time taken by similar LTTng-UST’s interpreted

filters with our eBPF interpreted and JITed ap-

proach. However, we limited the number of predi-

cates to only 9 variables, due to LTTng currently
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not allowing more than 9 distinct string variables

as trace payload. Refer to Figure 12 for results.

6.3 Shared Memory Experiment Set

For this experiment set, we created a syn-

thetic benchmark to evaluate the performance of

our KeBPF-UeBPF shared memory implementa-

tion and see how it compares with the default

syscall based sharing system used in KeBPF. We

started off by creating an eBPF program which

populates an eBPF array-map with 1000 integers

with random values. We then lookup these values

from userspace using the bpf() syscall with ar-

guments BPF MAP LOOKUP ELEM and measured the

time for multiple runs. We compare this with the

time taken to read the same values updated in

Kernel eBPF using our shared memory, and then

read from userspace using a simple read(), or a

helper function in UeBPF which calls read(). The

default bpf() implementation took 218ns/read

whereas our shared memory implementation took

2.2ns/read, which is explained by the fact that the

shared memory can be directly accessed.

6.4 Results and Inferences

In the first test case for filter optimizations,

also presented in Figure 10, we observe that for 100

million events and a 50 predicates filter, the inter-

preted eBPF filter is 4.3x slower than the hard-

coded filter (considered as a lower bound refer-

ence). The native compiled eBPF filter, however,

is only 1.4x slower than the hard-coded reference.

Even though the JIT compiled filter performance is

expected to be similar to that of the actual hard-

coded filter, since both are executing native ma-

chine code, we can see that this small overhead is

due to extra instructions being executed for each

filter, as seen in Listing 5. The overall filter perfor-

mance is consistent for 1M and 10M events, indi-

cating that there would be a consistent filter over-

head reduction in the 3x range, when using na-

tive compiled eBPF filters, as compared to similar

interpreted filters, for tracing scenarios with long

predicates and high event frequency.
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Fig. 11: Pure eBPF filter performance with 100M

events and a TRUE biased AND chain

In the second test case, as shown in Figure

11, we observe that with a constant 100 million

events and an increasing number of predicates, the
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benefit of natively compiled eBPF trace filters in-

creases marginally. The performance of a 10 predi-

cate JITed eBPF filter was 3.1x better than a sim-

ilar interpreted filter. This increased to 3.2x for 20

predicates, and a little over 3.3x for 40 predicates.

This shows that even for filters with unusually long

predicate chains, the performance was consistent

with that of natively compiled filters.
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Fig. 12: eBPF vs LTTng’s filter performance with in-

creasing number of TRUE/FALSE biased AND chain

predicates

In the third test scenario, we compared LT-

Tng’s interpreted filter performance with that of

eBPF’s JITed filter performance by observing the

biased FALSE cases in Figure 12. For 9 predicates,

eBPF’s JITed filter was 3.1x faster than a similar

LTTng’s interpreted filter. We further observed

that eBPF’s interpreted filter itself was 1.8x faster

than LTTng’s interpreted filter, pointing to a bet-

ter register-based eBPF interpreter. We then pro-

ceeded to see how these filters fared with LTTng

tracing enabled. In that case, if the filter evaluated

to TRUE, the tracepoint was recorded and the

observed time included the tracepoint time. We

choose to compare our observations with the LT-

Tng (No Filter) mode as the reference line, where

no filter was set and all tracepoints were recorded.

For a filter of 9 AND chained string comparisons,

biased to TRUE, the interpreted LTTng had an

overhead of 325ns/event, as compared to JITed

eBPF filter’s 154ns/event, when LTTng (No Fil-

ter) was taken as reference. Our JITed approach

was thus 2.1x faster. This demonstrates the fact

that, with the small cost of JITed filtering with

our library (154ns/event in this case), the user can

implement filtering at little cost to potentially save

a lot of resources by cutting down on unnecessary

events that can easily be filtered.

In the case of KeBPF-UeBPF shared memory

implementation, we got an overall improvement of

99x over the default implementation. The time

taken by 1000 reads of an integer array-map is

shown in Table 2.

Table 2: Time taken for 1000 reads of an integer array-

map

Time(ns) StdDev

Baseline 2120 210

eBPF-shm 2247 984

eBPF-syscall 218203 801

Our eBPF-shm shared memory is close to

the baseline values taken using simple read calls.

eBPF-syscall, in Table 2, shows the time taken to

read using the bpf() syscall. Going through the

eBPF code in the kernel shows that a similar pro-

cess, of using this syscall to update a map value

in the kernel, would incur a syscall time as well

as the time involved in copying the value to the

kernel space. In our shared memory system, how-

ever, there would be no extra copy involved, and

KeBPF and UeBPF can share data directly at a

high speed, as observed in our test.
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7 Conclusion and Future Work

This paper presents two contributions to trac-

ing techniques in userspace. First, we improved

the trace filtering mechanism by using Just-In-

Time (JIT) compilation to convert trace filter

bytecode to native machine code. We used the

Linux kernel’s eBPF based bytecode technique,

and improved it for tracing in userspace context.

We targeted LTTng-UST as the tracer, due to its

low overhead, and observed that our native filter-

ing approach surpasses the filtering performance

of similar high performance state-of-the-art tools.

We show that, with our technique, we can filter

traces in record time to have smaller traces and

provide more efficient tracing, in long running high

frequency in production tracing scenarios, such

as embedded soft-realtime systems and networked

nodes.

As a second contribution, we developed a

shared memory system between the default Kernel

eBPF and our Userspace eBPF, by extending the

eBPF system at both levels. This enables sharing

data at greater speeds and using it to do assisted

tracing from kernel to userspace and vice-versa.

We demonstrated this using a basic syscall latency

tracing example, where the thresholds could be

dynamically adjusted at function level granular-

ity using hooks in the userspace application, right

from within UeBPF. KeBPF could then access it to

make decisions on recording or discarding syscall

events. The interaction between a kernel VM and

a userspace VM is significant as it allows a di-

rect interaction between decision making sections.

Along with the benefit of zero-copy overhead, it

provides flexibility for performing conditional ac-

tions on kernel-userspace shared data - such as per-

formance counter values, process states (off-CPU

state, wait threshold, syscall latency threshold, re-

sources thresholds etc.).

There are some limitations in our current ap-

proach, however, which will motivate some of our

future work. We have observed that very specific

and long filter predicate usecases in trace filtering

can have a negative effect. The overall trace be-

comes small, and important events which give a

context to the tracing scenario get missed out. To

overcome this, we can use profile-guided tracing

where the generated bytecode can perform some

non intrusive profiling on the tracing, get some

feedback and also record traces which are relevant

to the filter scenario - even if it does not statisfy

the filter condition. Triggers for system-wide (ker-

nel+userspace) tracing can be defined and, when

enabled, in addition to the intended filtered tra-

cepoint, would also record a system-wide trace for

some predefined or dynamically defined duration.

We can also utilize LLVM’s compiler infrastruc-

ture to support some high level meta language to

define tracing specific scripts, and move towards

traditional script based filtering when required,

while keeping all the benefits of low overhead and

speed provided by LTTng. The UeBPF library

also could benefit from more explicit support for

data sharing through multiple threads. In some

specific usecases, it may also be worthwhile to in-

vestigate hardware based trace filtering, where an

eBPF machine would be implemented not just as

a JIT compiler but as specialized hardware. Our

current userspace eBPF implementation could also

be extended to provide support for program flow

tracing, such as with Intel Processor Trace (PT)

[38], where eBPF programs from userspace could

conditionally trigger a PT.
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