
Virtual machine monitoring using 
trace analysis

11 December, 2013
École Polytechnique de Montreal

Mohamad Gebai
Michel Dagenais



Content
General objectives

TMF – Virtual Machine View

Trace synchronization

Other work in progress



General objectives
Getting the state of a virtual machine at a certain point in time

Quantifying the overhead added by virtualization

Track the execution of processes inside a VM

Aggregate information from host and guests

Monitoring multiple VMs on a single host OS

Building a state system in TMF for virtual machine support

Finding performance setbacks due to resource sharing among VMs



Tracing
Using LTTng for kernel tracing

KVM as a hypervisor

Trace scheduling events

sched_switch for context switching

sched_migrate_task for thread migration between CPUs

Trace system calls (optional)

Trace interrupts (optional)

Qemu userspace tracing (optional)

Trace VMENTRY and VMEXIT on the hypervisor (hardware virtualization)



Tracing virtual machines
Each vCPU is 1 thread

A vCPU can be in VMX root mode or VMX non-root mode

A vCPU can be preempted on the host

The VM can not know when it is preempted or in VMX root mode

Processes in the VM seem to take more time



TMF Virtual Machine View
Shows the state of each vCPU of a VM

Aggregation of traces from the host and the guests

2 VM:

Jessie: 4 vCPUs

Jessie-clone: 2 vCPUs

vCPU 3 and vCPU 0 are complementary



TMF Virtual Machine View
Shows execution details inside the VM



TMF Virtual Machine View
Shows information about processes and task migration



TMF Virtual Machine View
Shows latency introduced by the hypervisor and by vCPU preemption

vCPU:

Red: hypervisor code

Green: user mode

Purple: vCPU preempted

Threads:

Green: user mode

Grey: thread appears to be running for the guest but is actually 
preempted



Trace synchronization
Based on the fully incremental convex hull synchronization algorithm

1-to-1 relation required between events from guest and host

Tracepoint is added to the guest kernel: trace_periodic_hypercall(counter)

Executed on the system timer interrupt softirq

This tracepoint triggers a hypercall which is traced on the host: 
trace_kvm_hypercall(counter)

Requires hardware-assisted virtualization for the hypercall instruction

Resistant to VM migrations, vCPU migrations and time drifts



Memory usage
Upon creation, a VM allocates its total RAM in memory

Pages are actually allocated when touched by processes inside the VM

When pages are freed inside the VM, the memory is not freed on the host

Solution: ballooning (Kernel thread which allocates memory and gives it 
back to the host)

Ballooning is done by defining rules

Ex: 80% of memory of the VM is used

VM will start swapping

These rules do not guarantee to choose the best VM for ballooning

KSM (Kernel Samepage Merging)

Ex: 20% of memory of the VM is used, but previous peak of 90% → 
70% of unused allocated frames



Memory usage
Trace page allocation and page freeing on the host and the guest



Future work
Instrument KSM

Redefine rules for ballooning while taking into consideration KSM and 
unused touched frames



Acknowledgement
Thanks to Genevieve Bastien for her help in TMF


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

