

Large-scale performance monitoring
framework

May 2013
École Polytechnique de Montreal

Julien Desfossez
Michel Dagenais

Summary

● Introduction
● Research question
● Objectives
● Litterature review
● Detailled objectives
● Future work
● Conclusion

Introduction

● Large-scale infrastructure (cloud computing)
● Massive use of virtualization
● High level monitoring
● Targetted monitoring (per-application)
● Fined-grained monitoring is expensive

Example of interesting performance
data

● Perf counters
● Scheduling events
● Page faults
● Parameters and/or frequency of syscalls

High-level problematic

● Determine the best way to collect and analyze
accurate and detailled metrics from the
servers in large-scale data-centers

● Production environment
● Minimum impact of monitored systems
● Real Time

Objectives

● Collect in real time, high resolution performance
data

● Monitor in high performance production
environments

● Adjustable level of details
● Framework to collect and detect performance

problems

Litterature review : cloud monitoring

● Distributed architectures
● High-level metrics
● XML, SOAP, etc
● Attempt to standardize on AppFlow
● Algorithms to select the best cloud provider

Litterature review : virtualization
monitoring

● Hypervisor level monitoring
● VM preemption for monitoring syscalls
● Virtualization of perf counters
● Scheduler optimization

Litterature review : cloud applications

● Twitter – Zipkin
● Google – Dapper
● Google – Rocksteady

Litterature review : summary

● Lots of papers focus on application-specific
monitoring

● Simulations or limited test machines
● Lack of efficient methods and algorithms for

low level measurements
● Lack of methods to collection execution flow
● Across multiple layers (applications, kernel,

hypervisor, VM kernel and user-space)

Detailled objectives

● Extract traces on the network
● Analyze in real time trace data
● Develop algorithms and methodologies to

aggregate traces at high throughput
● Automatic and manual control facilites

Extract traces

● Large volume
● Minimum delay between production and

availability
● Take into account routing and security

constraints

Real-time analysis

● Synchronize all trace streams
● Send metadata before data
● Minimum resources usage (disk, network,

CPU)
● Take into account execution modes (energy

saving)

Traces aggregation

● Extract metrics from traces
● High throughput and real time
● Distributed analysis depending on topology,

ressources and data availability

Control

● Manual, SSH
● Automation of tracepoint

activation/deactivation
● Automatic snapshot recording in flight recorder

mode
● Inspired from algorithmic trading for

automated reaction on events and state

Future work

● Standard analysis depending on environments
and applications

● Optimization of VM placement in data-centers
● Rules, filters, triggers

Conclusion

● Determine the best way to transport and
analyse performance data in large-scale
data-centers

● Control and automate trace recording and
collecting

● Production environment
● Framework for a distributed low-level

performance measurement

Virtual machine monitoring using trace
analysis

2 May, 2013
École Polytechnique de Montreal

Mohamad Gebai
Michel Dagenais

Content
General objectives

TMF – Virtual Machine View

Simultaneous tracing

Trace synchronization

Future work

General objectives
Getting the state of a virtual machine at a certain point in time

Quantifying the overhead added for virtualization

Monitoring multiple VM on a single host OS

Finding performance setback due to resource sharing among VMs

Building a state system in TMF specific to virtualization

TMF Virtual Machine View
Shows the state of the VM through time

Based on kvm tracepoints

Gives the exit reason upon kvm_exit events

2 Virtual machines with 1 virtual CPU

Blue: VM running
Red: Hypervisor running (overhead)
White: VM is scheduled out

Simultaneous tracing
Trace the host to monitor the VM state through time

Trace the VM for regular process analysis

Launch workloads in VM (CPU, memory benchmarks)

Correlate workloads in the VM to its behavior on the host

Trace synchronization
Clocks in VM and host are not synchronized

Getting the offset at any point in time

Applying the time offset on the VM events

Future work
Further investigation for more accurate delay calculation (considering the
hypercall overhead)

Applying the delay in the VM for time synchronization

TMF view: integrating the exit reason within the state system to give more
information on the VM status

Build a state system for VM that can be adapted to Java Virtual Machines

Future work (2)
TMF View - vCPU usage

Highlight the competition between multiple VMs over CPU time

Highlight when a VM is preempted by another VM

Highlight if a VM is denied CPU time because of preemption or because no
workload is to be executed

Highlight requested vCPU time vs allocated CPU time

Future work (3)
TMF View - Memory usage

Keep track of allocated and freed memory by the processes inside the VM

Keep track of touched memory pages by the VM in the host

Point out memory pages that can be freed by the hypervisor for memory
overcommitment

Final objectives
Highlight status information specific to VMs

Point out resource sharing among multiple VMs on a single host

Point out potential optimizations such as memory overcommitment

Provide information useful for VMs migration in order to avoid competition
over the same resources

References
[1] D. Bueso, E. Heymann, and M. A. Senar, “Towards Efficient Working
Set Estimations in Virtual Machines.”

[2] D. Marinescu and R. Kröger, “State of the art in autonomic computing
and virtualization,” Distributed Systems Lab, Wiesbaden University of
Applied Sciences, 2007.

[3] K. Anshumali, T. Chappell, and W. Gomes, “Intel 64 and ia-32 software
developer's manual.pdf,” Intel Technology Journal, vol. 14, pp. 104–127,
2010.

[4] D. Marinescu and R. Kröger, “State of the art in autonomic computing
and virtualization,” Distributed Systems Lab, Wiesbaden University of
Applied Sciences, 2007.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

