
Large-scale performance monitoring
framework for cloud monitoring

Run-Time Latency Detection
in Production

Décembre 2014
École Polytechnique de Montreal

Julien Desfossez
Michel Dagenais

2

Latency-tracker

● Kernel module to track down latency problems
at run-time

● Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree
source code)

● Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

3

Latency tracker previous state

● Prototype working and stable
● Needed more testing use-cases
● Performance measurements was in progress
● Hashtable needed scaling optimization

4

Usage

tracker = latency_tracker_create();

latency_tracker_event_in(tracker, key,
 threshold, timeout, callback);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event_out
takes too long to arrive (off-CPU profiling).

5

New feature: check current state

● It is now possible to query the current state of
a request without removing the key :
event = latency_tracker_get_event(tracker, key);

latency_tracker_put_event(event);

● Stateful tracing
● Refcount-based ownership

6

Implemented use-cases

● Block layer latency
– Delay between block request issue and complete

● Wake-up latency
– Delay between sched_wakeup and sched_switch

● Network latency
● IRQ latency
● System call latency

– Delay between the entry and exit of a system call

● Offcpu latency
– How long a process has been scheduled out

7

System call latency

● Developed in collaboration with François Doray

on syscall_entry:

latency_tracker_event_in(current_pid);

on syscall_exit:

latency_tracker_event_out(current_pid);

on sched_switch:

event = latency_tracker_get_event(next_pid)

if event && ((now – event->start) > threshold):

dump_stack(next_pid)

8

System call latency

● Developed in collaboration with François Doray

on syscall_entry:

latency_tracker_event_in(current_pid);

on syscall_exit:

latency_tracker_event_out(current_pid);

on sched_switch:

event = latency_tracker_get_event(next_pid);

if event && ((now – event->start) > threshold):
dump_stack(next_pid);

9

System call latency example

81136.460929
schedule
schedule_timeout
wait_for_completion
sync_inodes_sb
sync_inodes_one_sb
iterate_supers
sys_sync
tracesys

81136.461482
_cond_resched
sync_inodes_sb
sync_inodes_one_sb
iterate_supers
sys_sync
tracesys

81136.467357
_cond_resched
mempool_alloc
__split_and_process_
bio
dm_request
generic_make_reques
t
submit_bio
submit_bio_wait
blkdev_issue_flush
ext4_sync_fs
sync_fs_one_sb

81136.470176
schedule
schedule_timeout
wait_for_completion
submit_bio_wait
blkdev_issue_flush
ext4_sync_fs
sync_fs_one_sb
iterate_supers
sys_sync
tracesys

syscall_latency_stack: comm=sync, pid=32224

Dynamically change the threshold:
echo 1000000 > /sys/module/latency_tracker_syscalls/parameters/usec_threshold

10

Off-cpu profiling

on sched_switch(prev, next):

 latency_tracker_event_in(prev, cb)

 latency_tracker_event_out(next)

cb():

 dump_stack(pid)

on sched_wakeup(pid):

 event = latency_tracker_get_event(pid)

 if event && ((now – event->start) > threshold):

 dump_stack(current)

11

Off-cpu profiling example

offcpu_sched_wakeup:
 waker_comm=swapper/3 (0),
 wakee_comm=qemu-system-x86 (7726),
 wakee_offcpu_delay=10000018451,
 waker_stack=
 ttwu_do_wakeup
ttwu_do_activate.constprop.74
 try_to_wake_up
 wake_up_process
 hrtimer_wakeup
 __run_hrtimer
 hrtimer_interrupt
 local_apic_timer_interrupt
 smp_apic_timer_interrupt
 apic_timer_interrupt

offcpu_sched_switch:
 comm=qemu-system-x86,
 pid=7726,
 delay=10000140896,
 stack=
 schedule
 futex_wait_queue_me
 futex_wait
 do_futex
 SyS_futex
 system_call_fastpath

12

Performance improvements

● Controlled memory allocation
● Lock-less free-list
● Out-of-context reallocation of memory if

needed/enabled
● Now using userspace-rcu hashtable for lock-less

insert and lookup (ported to the kernel by Mathieu
Desnoyers: KURCU ?)

● Custom call_rcu thread to avoid the variable side-
effects of the built-in one

13

CPU scaling

14

Overhead on sysbench oltp
(MySQL)

Test Average Overhead

Baseline 63.26s

LTTng sched 63.65s 0.61%

LTTng syscalls 64.95s 2.66%

Latency_tracker 65.36s 3.31%

Latencytop 66.24s 4.70%

LTTng all 70.24s 11%

15

Future Work

● Keep internal state of the current latency
profile (last minute, last 5 minutes, last hours)

● Extract aggregated information about latencies
as histograms

● Compare evolutions of latencies and major
changes

● Analyse large data set of high-latency events
to help create and understand latency profiles

16

Install it

apt-get install git gcc make
linux-headers-generic

git clone
https://github.com/jdesfossez/late
ncy_tracker.git

cd latency_tracker

make

17

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

