Large-scale performance monitoring
framework for cloud monitoring

Run-Time Latency Detection
in Production

Julien Desfossez
Michel Dagenais

] Décembre 2014
Ecole Polytechnique de Montreal

Latency-tracker

» Kernel module to track down latency problems
at run-time

» Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree
source code)

» Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

Latency tracker previous state

Prototype working and stable

Needed more testing use-cases
Performance measurements was in progress
Hashtable needed scaling optimization

Usage

tracker = latency tracker create();

latency tracker event in(tracker, ,
threshold, timeout, callback);

latency tracker event out (tracker, key);

If the delay between the event in and event_out for the same IS
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event out
takes too long to arrive (off-CPU profiling).

New feature: check current state

* |t is now possible to query the current state of
a request without removing the key :

event = latency tracker get event(tracker, key);

latency tracker put event (event) ;

» Stateful tracing
» Refcount-based ownership

Implemented use-cases

Block layer latency
- Delay between block request issue and complete
Wake-up latency

- Delay between sched wakeup and sched switch
Network latency

IRQ latency
« System call latency

- Delay between the entry and exit of a system call
« Offcpu latency

- How long a process has been scheduled out

System call latency

* Developed in collaboration with Francois Doray
on syscall entry:
latency tracker event in(current pid);
on syscall exit:

latency tracker event out (current pid);

System call latency

* Developed in collaboration with Francois Doray
on syscall entry:
latency tracker event in(current pid);
on syscall exit:
latency tracker event out (current pid);
on sched switch:

event = latency tracker get event (next pid);

1f event && ((now — event->start) > threshold):

dump stack (next pid);

System call latency example

syscall_latency_stack: comm=sync, pid=32224

81136.460929
schedule
schedule_timeout
wait_for_completion
sync_inodes_sb
sync_inodes_one_sb
iterate_supers
Sys_sync

tracesys

81136.461482
_cond_resched
sync_inodes_sb
sync_inodes_one_sb
iterate _supers
Sys_sync

tracesys

Dynamically change the threshold:
echo 1000000 > /sys/module/latency _tracker_syscalls/parameters/usec_threshold 9

81136.467357
_cond_resched
mempool_alloc
__split_and_process__
bio

dm_request
generic_make_reques
t

submit_bio
submit_bio_wait
blkdev_issue_flush
ext4d _sync_fs

sync_fs _one_sb

81136.470176
schedule
schedule_timeout
wait_for_completion
submit_bio_wait
blkdev_issue_flush
ext4d _sync_fs
sync_fs_one_sb
iterate_supers
SysS_sync

tracesys

Off-cpu profiling

on sched switch(prev, next):
latency tracker event in(prev, cb)

latency tracker event out (next)

cb () :

dump stack (pid)

on sched wakeup (pid) :

event = latency tracker get event (pid)

if event && ((now - event->start) > threshold):

dump stack (current)

10

Off-cpu profiling example

offcpu sched wakeup: offcpu sched switch:
waker comm=swapper/3 (0), comm=gemu-system-x86,
wakee comm=gemu-system-x86 (7726), pid=7726,
wakee offcpu delay=10000018451, delay=1000014089¢0,
waker stack= stack=
ttwu do wakeup schedule
ttwu do activate.constprop./4 futex wait queue me
try to wake up futex wailt
wake up process do futex
hrtimer wakeup SyS futex
run hrtimer system call fastpath

hrtimer interrupt

local apic timer interrupt
smp_ apic timer interrupt
apic timer interrupt

11

Performance improvements

» Controlled memory allocation
* Lock-less free-list

» Qut-of-context reallocation of memory if
needed/enabled

* Now using userspace-rcu hashtable for lock-less
insert and lookup (ported to the kernel by Mathieu
Desnoyers: KURCU ?)

e Custom call_rcu thread to avoid the variable side-
effects of the built-in one

12

CPU scaling

Time to complete Hackbench (s)
Qo
1

0 20 40 60
Number of CPU

Test Baseline —#— SystemTap —*— URCU rhashtable

13
Hyperthreading e No 4 Yes

Overhead on sysbench oltp

Test
Baseline

LTTng sched

LTTng syscalls

Latency_tracker

Latencytop

LTTng all

(MySQL)

Average
63.26S

63.65s

64.95s

65.36s

66.24s

70.24s

Overhead

0.61%

2.66%

3.31%

4.70%

11%

14

Future Work

» Keep internal state of the current latency
profile (last minute, last 5 minutes, last hours)

» Extract aggregated information about latencies
as histograms

 Compare evolutions of latencies and major
changes

* Analyse large data set of high-latency events
to help create and understand latency profiles

15

Install it

apt—-get 1nstall git gcc make
linux—-headers—-generic

glt clone
https://github.com/jdesfossez/late
ncy tracker.git

cd latency tracker

make

16

Questions ?

17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

