
Large-scale performance monitoring
framework for cloud monitoring

Live Trace Reading and Processing

May 2014
École Polytechnique de Montreal

Julien Desfossez
Michel Dagenais

2

Live Trace Reading

● Read the trace while it is being recorded
● Local or remote session
● Configurable flush period (live-timer)
● Merged into LTTng 2.4.0
● Supported by Babeltrace 1.2 and LTTngTop
● Work in progress in TMF

3

Infrastructure integration

Server
(lttng-sessiond)

Server
(lttng-sessiond)

Server
(lttng-sessiond)

lttng-relayd

Viewer

TCP

TCP

4

Live streaming session
On the server to trace :

$ lttng create -–live 2000000 -U net://10.0.0.1

$ lttng enable-event -k sched_switch

$ lttng enable-event -k –-syscall -a

$ lttng start

On the receiving server (10.0.0.1) :

$ lttng-relayd -d

On the viewer machine :

$ lttngtop -r 10.0.0.1

Or

$ babeltrace -i lttng-live net://10.0.0.1

5

What has been done since the last
progress report meeting

● Bugfixing and release of LTTng 2.4.1
● Graphite integration tests
● Stress/performance testing
● Started Zipkin/Tomograph integration to trace

OpenStack (Python)
● Working with an GSoC intern on Babeltrace to Zipkin
● Sysadmin-oriented analyses prototypes (Python)
● Writing the paper about live tracing

6

Graphite Integration

7

Stress-testing setup

● 48 AMD Opteron(tm) Processor 6348
● 512GB RAM
● 4x1TB SSD (1 for the OS, 1 for the VMs, 1 for

the traces)
● Ubuntu 14.04 LTS
● Linux Kernel 3.13.0-16
● LTTng Tools 2.4+ (git HEAD on March 10th)

8

Stress-testing

● 100 Ubuntu 12.04 VMs with 1GB RAM and
1 vCPU

● Streaming their traces to the host lttng-relayd
with the live-timer of 5 seconds

● Tracing syscalls + sched_switch
● Running Sysbench OLTP (MySQL stress test)
● Measure overall impact on the system

9

100 Sysbench

10

Python analyses

demo

11

Next steps

● Finish writing the paper
● Work on the architecture to process traces and extract

metrics from large group of machines
– Studying the large-scale infrastructures monitoring systems

– Studying HTTP analytics on large-scale web infrastructures

– Look at Facebook Scribe and integration with Hadoop
HDFS

– Continue prototyping with the Python libraries

12

Install it

● Packages for your distro (lttng-modules,
lttng-ust, lttng-tools, userspace-
rcu, babeltrace)

● For Ubuntu : PPA for daily build (lttngtop)

● Or from the source, see
http://git.lttng.org

13

LTTng 2.5 features

● Save/Restore sessions
– lttng save

– lttng restore

● Configuration file (lttng.conf)
– System-wide : /etc/lttng/lttng.conf

– User-specific : $HOME/.lttng/lttng.conf

– Run-time

● Perf UST
● User-defined modules on lttng-sessiond startup
● lttng --version with git commit id

14

Questions ?

Virtual machine CPU monitoring with
Kernel Tracing

15 May, 2014
École Polytechnique de Montreal

Mohamad Gebai
Michel Dagenais

Content
General objectives

Current approaches

Kernel tracing

Trace synchronization

Virtual Machine Analysis

Execution flow recovery

General objectives
Getting the state of a virtual machine at a certain point in time

Quantifying the overhead added by virtualization

Track the execution of processes inside a VM

Aggregate information from host and guests

Monitoring multiple VMs on a single host OS

Finding performance setbacks due to resource sharing among VMs

Current approaches
Top

Steal time: percentage of vCPU preemption for the last second

Does not reflect the effective load on the host

0% for idle VMs even if the physical CPU is busy

Not enough information

Current approaches
Perf kvm

Information about VM exits, performance counters

No information from inside the VM

No information about VM interactions

Kernel tracing
Trace scheduling events

sched_switch for context switches

sched_migrate_task for thread migration between CPUs (optional)

sched_process_fork, sched_process_exit

Trace VMENTRY and VMEXIT on the hypervisor (hardware virtualization)

kvm_entry

kvm_exit

Tracing virtual machines
Each VM is a process

Each vCPU is 1 thread

Per-thread state can be rebuilt

A vCPU can be in VMX root mode or VMX non-root mode

A vCPU can be preempted on the host

The VM can't know when it is preempted or in VMX root mode

Processes in the VM seem to take more time

Trace host and guests simultaneously

Trace synchronization
Time difference between host and an idle VM

Trace synchronization
Time difference between host and an active VM

Trace synchronization
Based on the fully incremental convex hull synchronization algorithm

1-to-1 relation required between events from guest and host

Tracepoint is added to the guest kernel

Executed on the system timer interrupt softirq

Triggers a hypercall which is traced on the host

Resistant to vCPU migrations and time drifts

Trace synchronization
Kernel module added to LTTng as an addon

In the guest:

Trigger a hypercall (event a)

On the host:

Acknowledge the hypercall (event b)

Give control back to the guest (event c)

In the guest:

Acknowledge the control (event d)

Trace synchronization
Host and guest threads, as seen before..

..and after synchronization

Trace synchronization
Time difference between host and VM after synchronization

TMF Virtual Machine View
Shows the state of each vCPU of a VM

Aggregation of traces from the host and the guests

2 VM:

Debian and Ubuntu

vCPU 0 and vCPU 1 are complementary; fighting over the same pCPU

TMF Virtual Machine View
Detailed information of execution inside the VM

Process burnP6 (TID 2635) is deprived from the pCPU while the CPU time
is still accounted for

TMF Virtual Machine View
Shows latency introduced by the hypervisor (ie. emulation in KVM) to the
nanosecond scale

Use case
Periodic critical task

Inexplicably takes longer on some executions

100% CPU usage from the guest's point of view

Use case
VCPU is preempted on the host

Invisible to the VM

Duration of preemption is easily measurable

Execution flow recovery
Build the execution flow centered around a certain task A

List of execution intervals affecting the completion time of A

Find the source of preemption across systems

Example:

Execution flow recovery
Previous example:

Execution flow centered around task 3525:

Acknowledgements
Ericsson

CRSNG

Professor Michel Dagenais

Geneviève Bastien

Francis Giraldeau

DORSAL Lab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

