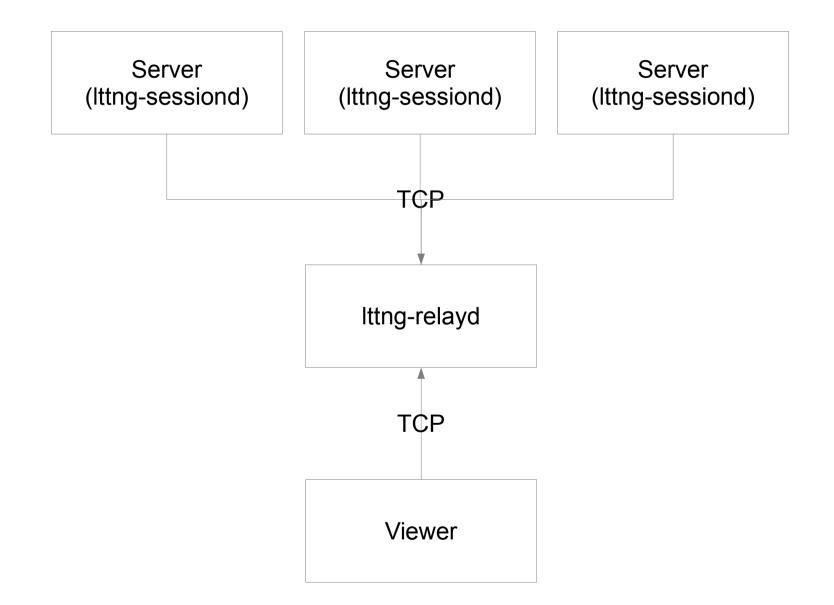
Large-scale performance monitoring framework for cloud monitoring

Live Trace Reading and Processing

Julien Desfossez Michel Dagenais


May 2014 École Polytechnique de Montreal

Live Trace Reading

- Read the trace while it is being recorded
- Local or remote session
- Configurable flush period (live-timer)
- Merged into LTTng 2.4.0
- Supported by Babeltrace 1.2 and LTTngTop
- Work in progress in TMF

Infrastructure integration

Live streaming session

On the server to trace :

- \$ lttng create --live 2000000 -U net://10.0.0.1
- \$ lttng enable-event -k sched switch
- \$ lttng enable-event -k --syscall -a
- \$ lttng start
- On the receiving server (10.0.0.1) :
- \$ lttng-relayd -d

On the viewer machine :

\$ lttngtop -r 10.0.1


Or

\$ babeltrace -i lttng-live net://10.0.0.1

What has been done since the last progress report meeting

- Bugfixing and release of LTTng 2.4.1
- Graphite integration tests
- Stress/performance testing
- Started Zipkin/Tomograph integration to trace OpenStack (Python)
- Working with an GSoC intern on Babeltrace to Zipkin
- Sysadmin-oriented analyses prototypes (Python)
- Writing the paper about live tracing

Graphite Integration

Stress-testing setup

- 48 AMD Opteron(tm) Processor 6348
- 512GB RAM
- 4x1TB SSD (1 for the OS, 1 for the VMs, 1 for the traces)
- Ubuntu 14.04 LTS
- Linux Kernel 3.13.0-16
- LTTng Tools 2.4+ (git HEAD on March 10th)

Stress-testing

- 100 Ubuntu 12.04 VMs with 1GB RAM and 1 vCPU
- Streaming their traces to the host Ittng-relayd with the live-timer of 5 seconds
- Tracing syscalls + sched_switch
- Running Sysbench OLTP (MySQL stress test)
- Measure overall impact on the system

100 Sysbench

Python analyses

demo

Next steps

- Finish writing the paper
- Work on the architecture to process traces and extract metrics from large group of machines
 - Studying the large-scale infrastructures monitoring systems
 - Studying HTTP analytics on large-scale web infrastructures
 - Look at Facebook Scribe and integration with Hadoop HDFS
 - Continue prototyping with the Python libraries

Install it

- Packages for your distro (lttng-modules, lttng-ust, lttng-tools, userspacercu, babeltrace)
- For Ubuntu : PPA for daily build (lttngtop)
- Or from the source, see http://git.lttng.org

LTTng 2.5 features

- Save/Restore sessions
 - Ittng save
 - Ittng restore
- Configuration file (Ittng.conf)
 - System-wide : /etc/lttng/lttng.conf
 - User-specific : \$HOME/.lttng/lttng.conf
 - Run-time
- Perf UST
- User-defined modules on Ittng-sessiond startup
- Ittng --version with git commit id

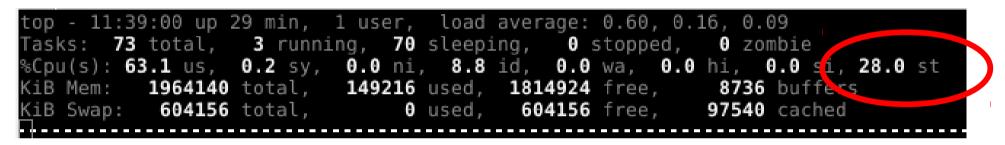
Questions ?

Virtual machine CPU monitoring with Kernel Tracing

Mohamad Gebai Michel Dagenais

15 May, 2014 École Polytechnique de Montreal

Content


- General objectives
- Current approaches
- Kernel tracing
- Trace synchronization
- Virtual Machine Analysis
- Execution flow recovery

General objectives

- Getting the state of a virtual machine at a certain point in time
- Quantifying the overhead added by virtualization
- Track the execution of processes inside a VM
- Aggregate information from host and guests
- Monitoring multiple VMs on a single host OS
- Finding performance setbacks due to resource sharing among VMs

Current approaches

- Тор
- Steal time: percentage of vCPU preemption for the last second

- Does not reflect the effective load on the host
 - 0% for idle VMs even if the physical CPU is busy
- Not enough information

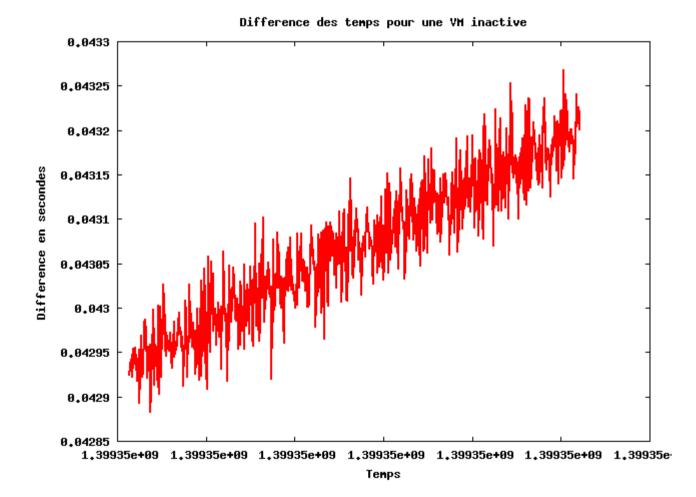
Current approaches

- Perf kvm
- Information about VM exits, performance counters

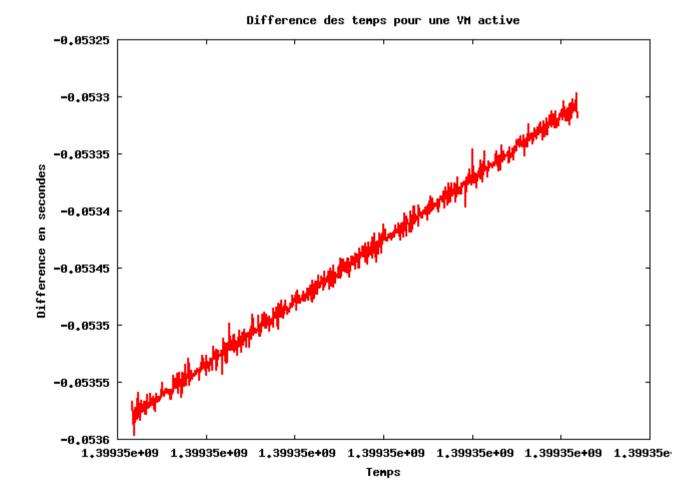
14:13:28.000181							
Analyze events f	or all VMs, all	. VCPUs‡					
VM-	EXIT Samples	s Samples%	Time%	Min Time	Max Time	Avg time	
IO_INSTRUC EPT_MISCO APIC_AC VM EXCEPTION EXTERNAL_INTER	NFIG 25 CESS 21 HLT 8 ICALL 5 I_NMI 2	5 12,08% 10,14% 8 3,86%	0.26% 0.01% 0.02% 99.71% 0.00% 0.00% 0.00%	2us 1us 2us 2420us 0us 0us 32us	1478us 6us 13us 248023us 1us 1us 32us	14.04us (+- 3.79us (+- 6.12us (+- 99141.25us (+- 1.20us (+- 1.31us (+- 32.37us (+-	72.47%) 10.03%) 12.36%) 28.92%) 20.79%) 25.97%) 0.00%)

Total Samples:207, Total events handled time:795429.44us.

- No information from inside the VM
- No information about VM interactions

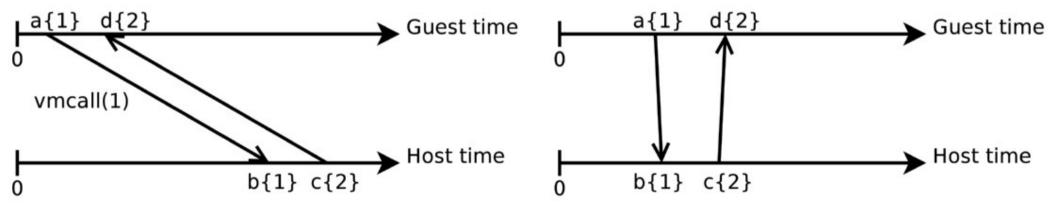

Kernel tracing

- Trace scheduling events
 - sched_switch for context switches
 - sched_migrate_task for thread migration between CPUs (optional)
 - sched_process_fork, sched_process_exit
- Trace VMENTRY and VMEXIT on the hypervisor (hardware virtualization)
 - kvm_entry
 - kvm_exit

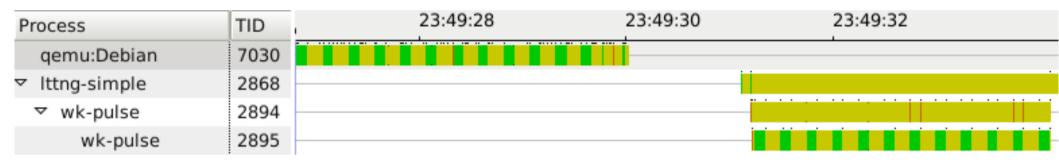

Tracing virtual machines

- Each VM is a process
- Each vCPU is 1 thread
 - Per-thread state can be rebuilt
- A vCPU can be in VMX root mode or VMX non-root mode
- A vCPU can be preempted on the host
- The VM can't know when it is preempted or in VMX root mode
- Processes in the VM seem to take more time
- Trace host and guests simultaneously

Time difference between host and an idle VM

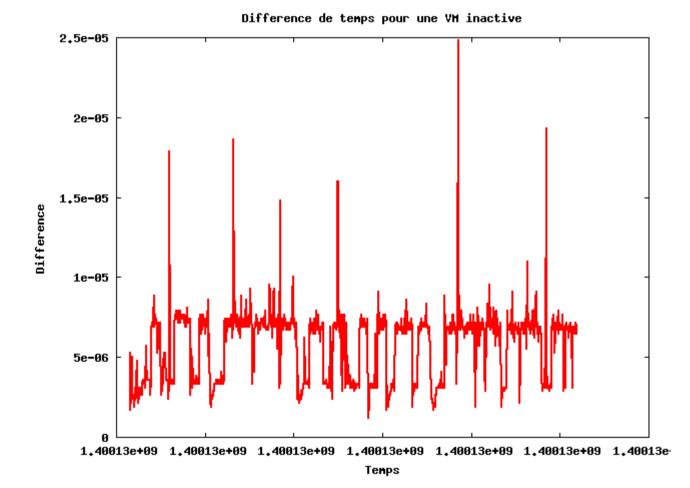


Time difference between host and an active VM



- Based on the fully incremental convex hull synchronization algorithm
- 1-to-1 relation required between events from guest and host
- Tracepoint is added to the guest kernel
- Executed on the system timer interrupt softirg
- Triggers a hypercall which is traced on the host
- Resistant to vCPU migrations and time drifts

- Kernel module added to LTTng as an addon
- In the guest:
 - Trigger a hypercall (event a)
- On the host:
 - Acknowledge the hypercall (event b)
 - Give control back to the guest (event c)
- In the guest:
 - Acknowledge the control (event d)

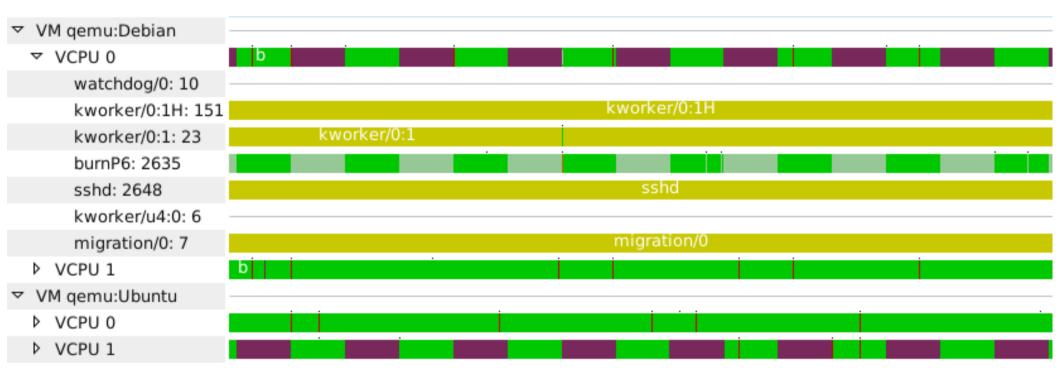

Host and guest threads, as seen before..

..and after synchronization

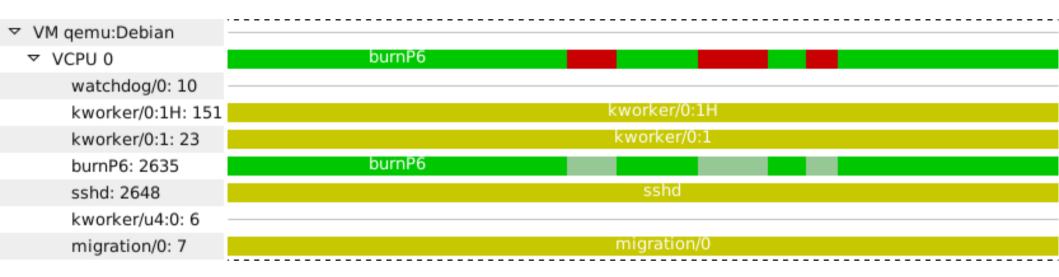
Process	TID	23:49:27	23:49:28	23:49:29
	2868			
∽ wk-pulse	2894			
wk-pulse	2895			
qemu:Debian	7030			

Time difference between host and VM after synchronization

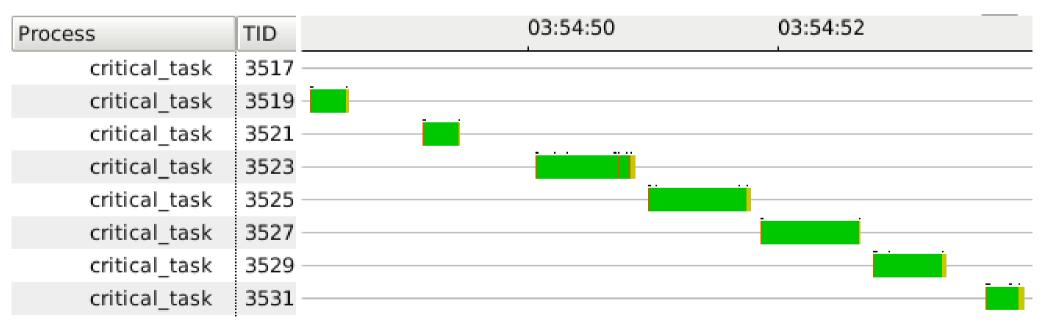
TMF Virtual Machine View


- Shows the state of each vCPU of a VM
- Aggregation of traces from the host and the guests

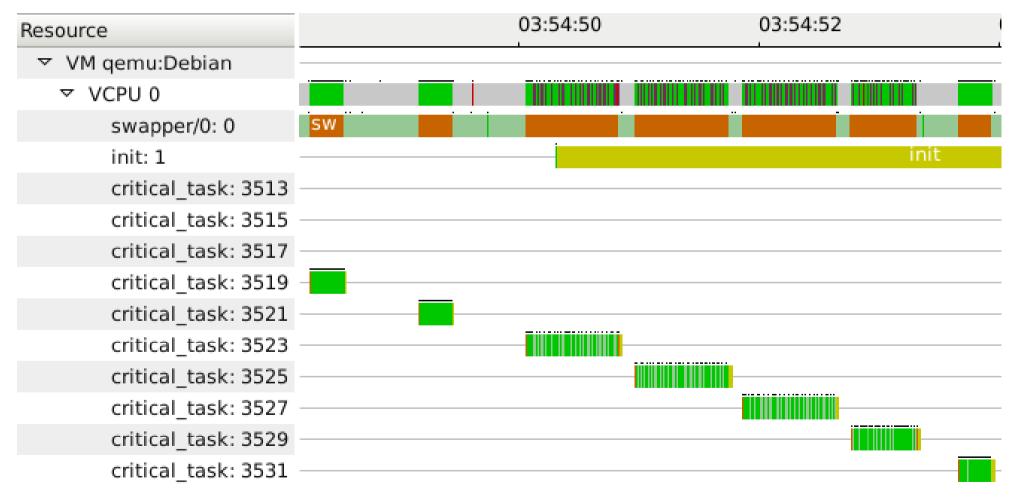
- 2 VM:
 - Debian and Ubuntu
 - vCPU 0 and vCPU 1 are complementary; fighting over the same pCPU


TMF Virtual Machine View

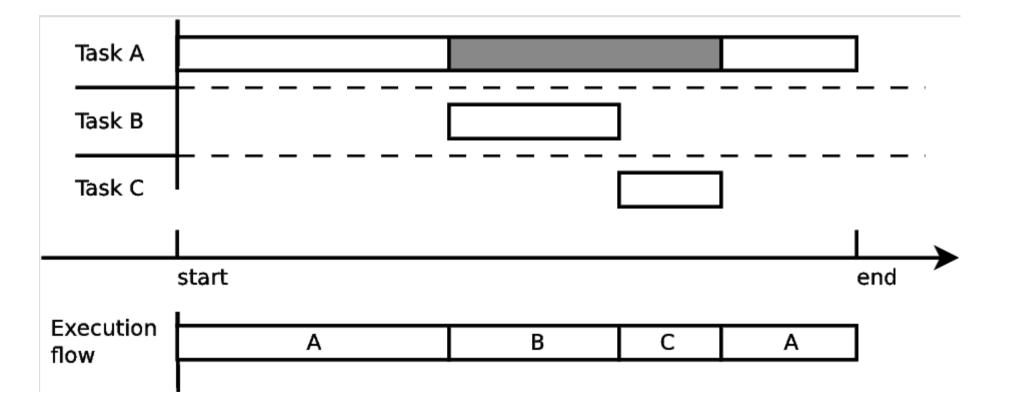
- Detailed information of execution inside the VM
- Process burnP6 (TID 2635) is deprived from the pCPU while the CPU time is still accounted for


TMF Virtual Machine View

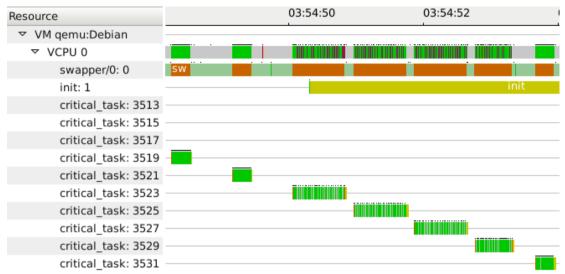
 Shows latency introduced by the hypervisor (ie. emulation in KVM) to the nanosecond scale


Use case

- Periodic critical task
- Inexplicably takes longer on some executions
- 100% CPU usage from the guest's point of view


Use case

- VCPU is preempted on the host
- Invisible to the VM
- Duration of preemption is easily measurable


Execution flow recovery

- Build the execution flow centered around a certain task A
- List of execution intervals affecting the completion time of A
- Find the source of preemption across systems
- Example:

Execution flow recovery

• Previous example:

Execution flow centered around task 3525:

Resource	Duration	03:54:51.000 03:54:51.200 03:54:51.400 03:54:51.600
critical_task: 3525	0.274714	
✓ VM qemu:Ubuntu	0.270565	
cc: 2806	0.270551	
✓ VM qemu:Debian	0.001039	
sleep: 3526	0.000464	
✓ Host: Host	0.262080	
burnP6: 30672	0.260352	
qemu:Debian: 8689	0.001326	
irq/46-iwlwifi: 772	0.000296	

Acknowledgements

- Ericsson
- CRSNG
- Professor Michel Dagenais
- Geneviève Bastien
- Francis Giraldeau
- DORSAL Lab