
Large-scale performance monitoring
framework for cloud monitoring

Run-Time Latency Detection
in Production

Décembre 2014
École Polytechnique de Montreal

Julien Desfossez
Michel Dagenais

Current Status

● lttng-live protocol is merged into LTTng 2.4
● Live viewers: Babeltrace and LTTngTop [1]
● Python analysis scripts [2] are starting to

produce a wide range of quick reports

3

Live streaming session
On the server to trace :

$ lttng create -–live 2000000 -U net://10.0.0.1

$ lttng enable-event -k sched_switch

$ lttng enable-event -k –-syscall -a

$ lttng start

On the receiving server (10.0.0.1) :

$ lttng-relayd -d

On the viewer machine :

$ lttngtop -r 10.0.0.1

Or

$ babeltrace -i lttng-live net://10.0.0.1

4

Demo

● Quick demo of LTTng live, LTTngTop live and
the analyzes scripts

5

Next steps

● We now have to take care of the various
overheads:
– Tracing rate: disk and network overhead

– Analysis time: the bigger the trace, the longer the
analysis

– Still a lot of manual investigation required even
after the analysis completes

– How to extract relevant information from a live
trace

6

Live state system

● A state system with no end time
● Only keep 10 seconds of detailed history
● Keep original “entry” events until they are no

longer useful (garbage collector)
● Allow to query the state of any process/FD
● Allow to dump the original events in the order

they were produced

7

Example with 10sec moving window

10:00:01 open /tmp/test, fd = 4

10:00:02 write 8 kB to fd 4

10:00:03 open /tmp/test2, fd = 5

10:00:04 write 16 kB to fd 5

10:00:05 close fd 5

10:00:06 state:

 - fd 4 </tmp/test> opened at 10:00:01, 8 kB write

 - fd 5 </tmp/test2> opened at 10:00:03, 16 kB write

...

10:00:15 state:

 - fd 4 </tmp/test> opened at 10:00:01, 8 kB write

8

Live state system

● Working prototype with Babeltrace live [3]
● Integration with Redis (key/value in memory DB on the

network)
● Lua scripts server-side (so we can use multiple

clients/providers)
● Even with redis pipelining and events processing in C, the

overhead of keeping track of the state takes around 20% CPU
constantly for one idle desktop

● This approach gives us a great granularity to dig into the
problems with a simplified state, but the overhead is far too
high for 24/7 monitoring and most of the data is useless

9

Focusing on outliers

● Data centers already have tools to monitor
average usage of all the resources, they scale
and every sysadmin is used to them

● Averages are a convenient way to hide
problems

● Really complex problems appear sporadically
● Pinpointing these problems can take days of

tracing and maybe more in trace analysis

10

Introducing latency-tracker

● Prototype work in progress to help track down
latency problems [4]

● Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree)

● Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

11

Using it

tracker = latency_tracker_create();

latency_tracker_event_in(tracker, key,
 threshold, timeout, callback);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event_out
takes too long to arrive (off-CPU profiling).

12

Implemented use-cases

● Block layer latency
– Delay between block request issue and complete

● Scheduler latency
– Delay between sched_wakeup and sched_switch

● Network latency
– Delay between the arrival of a packet in the network stack

to the delivery in user-space (or error/drop conditions)

● IRQ latency
– Delay between the IRQ notification and the handler entry

13

Configuration

● All the examples have dynamically configurable
parameter options: threshold, timeout and rate
limiter

● A garbage collector is available for unbalanced
events in/out

● No memory allocation performed in the critical
path of the events

● IRQ-safe locking (currently studying scalable HT)

14

Callbacks

● Must be fast enough to avoid stalling the system, we
are in the critical path

● Emitting tracepoints, doing some basic aggregation,
waking-up a user-space process are good callbacks

● The tracepoint emitted from this module are “stateful
tracepoints”

● Additionally, we can collect all the information we
need during the callback (type of FD, etc)

● Easy integration with LTTng and Ftrace

15

Demo

16

Identifying and understanding a
latency with a LTTng snapshot

● Load the latency_tracker and block_latency modules

● Wait on /proc/block_tracker with cat

● When it returns, call “lttng snapshot record”

● The trace generated contains around 10k events (700 kB)
and covers around 8 seconds

● One of the events in the trace was generated by the
latency tracker, so we automatically know where to focus
the analysis

● Low overhead, nothing extracted until a problem occurs
(measurements in progress)

17

Latency tracker current state

● Prototype working and stable
● Need more testing use-cases
● Performance measurements in progress
● Hashtable scaling optimization

18

Latency tracker future

● Adaptative threshold depending on the
exploitation conditions (with a training phase)

● Detect “noisy neighbours” on cloud instances
at run-time without benchmark

● Expose custom metrics through /proc to
integrate with existing monitoring tools

● Port a similar framework to user-space

19

Other alternatives

● SystemTap and dtrace can perform this kind of
aggregation

● Not designed to be called from the kernel or other
module

● Embedded build system, hard integration with other
projects

● The data structures are protected with a global mutex
● A simple SystemTap is ~1500 lines of generated C
● Designed as debug tools, not monitoring with

production and scaling in mind

20

Install it

apt-get install git gcc make
linux-headers-generic

git clone
https://github.com/jdesfossez/late
ncy_tracker.git

cd latency_tracker

make

21

Questions ?

22

References

[1] git://git.lttng.org/lttngtop.git

[2] https://github.com/jdesfossez/lttng-analyses.git

[3] https://github.com/jdesfossez/babeltrace-dev.git (livestatemachine)

[4] https://github.com/jdesfossez/latency_tracker.git

https://github.com/jdesfossez/lttng-analyses.git
https://github.com/jdesfossez/babeltrace-dev.git
https://github.com/jdesfossez/latency_tracker.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

