Large-scale performance monitoring
framework for cloud monitoring

Run-Time Latency Detection
in Production

Julien Desfossez
Michel Dagenais

] Décembre 2014
Ecole Polytechnique de Montreal



Current Status

* |Ittng-live protocol is merged into LTTng 2.4

* Live viewers: Babeltrace and LTTngTop [1]

* Python analysis scripts [2] are starting to
produce a wide range of quick reports



Live streaming session

On the server to trace

S lttng create --live 2000000 -U net://10.0.0.1
$ lttng enable-event -k sched switch

$ lttng enable-event -k —--syscall -a

$ lttng start

On the receiving server (10.0.0.1)

$ lttng-relayd -d

On the viewer machine

S lttngtop -r 10.0.0.1

Or

S babeltrace -i lttng-live net://10.0.0.1



Demo

e Quick demo of LTTng live, LTTngTop live and
the analyzes scripts



Next steps

 \We now have to take care of the various
overheads:

- Tracing rate: disk and network overhead

- Analysis time: the bigger the trace, the longer the
analysis

- Still a lot of manual investigation required even
after the analysis completes

- How to extract relevant information from a live
trace



Live state system

» A state system with no end time
* Only keep 10 seconds of detailed history

» Keep original “entry” events until they are no
longer useful (garbage collector)

* Allow to query the state of any process/FD

* Allow to dump the original events in the order
they were produced



Example with 10sec moving window

10:
10:
10:
10:
10:
10:

10:

00

00
00

00

00

:01
00:

02

:03
:04
00:

05

:06

:15

open /tmp/test, fd = 4
write 8 kB to fd 4

open /tmp/test2, fd = 5
write 16 kB to f£d 5
close fd 5

state:

- fd 4 </tmp/test> opened at 10:00:01, 8 kB write
- fd 5 </tmp/test2> opened at 10:00:03, 16 kB write

state:
- fd 4 </tmp/test> opened at 10:00:01, 8 kB write



Live state system

Working prototype with Babeltrace live [3]

Integration with Redis (key/value in memory DB on the
network)

Lua scripts server-side (so we can use multiple
clients/providers)

Even with redis pipelining and events processing in C, the
overhead of keeping track of the state takes around 20% CPU
constantly for one idle desktop

This approach gives us a great granularity to dig into the
problems with a simplified state, but the overhead is far too
high for 24/7 monitoring and most of the data is useless



Focusing on outliers

e Data centers already have tools to monitor
average usage of all the resources, they scale
and every sysadmin is used to them

* Averages are a convenient way to hide
problems

* Really complex problems appear sporadically

» Pinpointing these problems can take days of
tracing and maybe more in trace analysis



Introducing latency-tracker

* Prototype work in progress to help track down
latency problems [4]

 Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree)

» Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

10



Using it
tracker = latency tracker create();

latency tracker event in(tracker, ,
threshold, timeout, callback);

latency tracker event out (tracker, key);

If the delay between the event in and event_out for the same IS
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event out
takes too long to arrive (off-CPU profiling).

11



Implemented use-cases

Block layer latency

- Delay between block request issue and complete
Scheduler latency

- Delay between sched wakeup and sched_ switch
Network latency

- Delay between the arrival of a packet in the network stack
to the delivery in user-space (or error/drop conditions)

IRQ latency

- Delay between the IRQ notification and the handler entry

12



Configuration

* All the examples have dynamically configurable
parameter options: threshold, timeout and rate
limiter

» A garbage collector is available for unbalanced
events in/out

 No memory allocation performed in the critical
path of the events

» |RQ-safe locking (currently studying scalable HT)

13



Callbacks

* Must be fast enough to avoid stalling the system, we
are in the critical path

* Emitting tracepoints, doing some basic aggregation,
waking-up a user-space process are good callbacks

* The tracepoint emitted from this module are “stateful
tracepoints”

» Additionally, we can collect all the information we
need during the callback (type of FD, etc)

e Easy integration with LTTng and Ftrace

14



Demo

15



ldentifying and understanding a
latency with a LTThg snapshot

« Load the latency_tracker and block latency modules
« Wait on /proc/block tracker with cat

« When it returns, call “1ttng snapshot record’

* The trace generated contains around 10k events (700 kB)
and covers around 8 seconds

* One of the events in the trace was generated by the
latency tracker, so we automatically know where to focus
the analysis

 Low overhead, nothing extracted until a problem occurs
(measurements in progress)

16



Latency tracker current state

Prototype working and stable

Need more testing use-cases
Performance measurements in progress
Hashtable scaling optimization

17



Latency tracker future

Adaptative threshold depending on the
exploitation conditions (with a training phase)

Detect "noisy neighbours” on cloud instances
at run-time without benchmark

Expose custom metrics through /proc to
integrate with existing monitoring tools

Port a similar framework to user-space

18



Other alternatives

« SystemTap and dtrace can perform this kind of
aggregation

* Not designed to be called from the kernel or other
module

 Embedded build system, hard integration with other
projects

* The data structures are protected with a global mutex
* Asimple SystemTap is ~1500 lines of generated C

» Designed as debug tools, not monitoring with
production and scaling in mind

19



Install it

apt—-get 1nstall git gcc make
linux—-headers—-generic

glt clone
https://github.com/jdesfossez/late
ncy tracker.git

cd latency tracker

make

20



Questions ?

21



B LN

References

] git://git.Ittng.org/Ittngtop.git

https://github.com/jdesfossez/Ittng-analyses.qgit
hitps://github.com/jdesfossez/babeltrace-dev.git (livestatemachine)

https://github.com/jdesfossez/latency _tracker.qgit

22


https://github.com/jdesfossez/lttng-analyses.git
https://github.com/jdesfossez/babeltrace-dev.git
https://github.com/jdesfossez/latency_tracker.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

