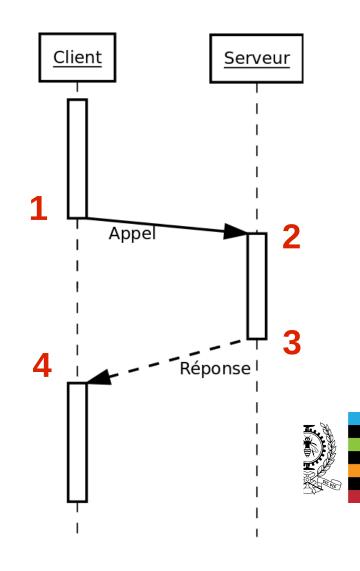
Debugging and Tracing of Many-core Processors

DORSAL Laboratory Department of Computer and Software Engineering POLYTECHNIQUE MONTRÉAL

- Introduction
- Remote procedure calls debugging
- Tracing many-core processors
- Conclusion


Remote Procedure Calls (RPC)

- Calling functions in a different address space
- Define a logical thread across RPCs
- Syntax similar to regular function calls
- Hidden complexity of remote communications

Remote Procedure Calls, description

- 1. Encoding input parameters
- 2. Decoding by server
- 3. Encoding of output parameters after remote execution
- 4. Decoding of output parameters and continuation of normal operation

Remote Procedure Calls, examples

 Protocols: ONC (SunRPC), D-Bus, XML-RPC, Microsoft DCOM and WCF...

• Intel Xeon Phi co-processor: offload mode

• Custom implementation: LTTng, Transmission

• Other: API REST (Web applications)

Remote Procedure Calls Debugging, objectives

- Avoid the need to use two debuggers, see a partial story on each, and go from one to the other
 - Support different Remote Procedure Call paradigms
 - Hide the Remote Procedure Call Machinery

RPC Debugging, existing solutions

- Microsoft Visual Studio: DCOM and WCF
 - Automatically attaches to the server process
 - Application-specific proprietary solution

- Intel Xeon Phi: debugging offload mode
 - Based on GDB and Eclipse
 - Two instances of GDB created by Eclipse

RPC Debugging, with GDB ?

- Multi-process
- Non-stop mode
- Python extensions
 - Breakpoint and FinishBreakPoint
 - Callbacks on breakpoints
 - B Listing threads and processes
 - Output Provide the stack unwinding
 - Operation Operation Operation Operation
 - 🙁 Control the execution of debugged threads
 - 🙁 Changing the active thread in the interface

RPC Debugging, solution overview

- Python extensions in GDB
- Four new commands
 - step-rpc
 - Step checking if a remote procedure call is initiated.
 - finish-rpc
 - Complete the current remote procedure call and stop.
 - backtrace-rpc
 - Display the thread stack, combining the functions called within the server and the calling functions in the client, hiding the RPC layer.
 - bind-rpc
 - Specify a relation between a client and a server function
- Ex.: ONC, xmlrpc-c, gdbus, LTTng, Transmission.

Internal breakpoints

		-
Step	Who	Event
1	Client	RPC initiation
2	Server	Server function execution
3	Server	End of server function
4	Client	Receiving the result and resuming normal execution

RPC Debugging, example backtrace-rpc

Server

#0 do things at server.c:12 sample add at server.c:32 #1 callNamedMethod at registry.c:294 #2 xmlrpc_dispatchCall at registry.c:324 #3 xmlrpc_registry_process_call2 at registry.c:413 #4 processCall at xmlrpc_server_abyss.c:475 #5 handleXmlrpcReq at xmlrpc_server_abyss.c:610 #6 runUserHandler at server.c:541 #7 #8 processDataFromClient at server.c:577 #9 serverFunc at server.c:629 #10 connJob at conn.c:39 #11 pthreadStart at thread_pthread.c:49 #12 start_thread at pthread_create.c:301 #13 clone at clone.S:115

Client

pselect at pselect.c:73 #0 waitForWork at xmlrpc curl transport.c:437 #1 finishCurlMulti at xmlrpc_curl_transport.c:570 #2 #3 performCurlTransaction at xmlrpc_curl_transport.c:1050 performRpc at xmlrpc_curl_transport.c:1155 #4 call at xmlrpc_curl_transport.c:1376 #5 xmlrpc_client_call2 at xmlrpc_client.c:580 #6 clientCall_va at xmlrpc_client_global.c:147 #7 xmlrpc_client_call at xmlrpc_client_global.c:174 #8 add at client.c:36 **#9** #10 main at client.c:62

server - #0 do_things at server.c:12
server - #1 sample_add at server.c:32
client - #2 add at client.c:36
client - #3 main at client.c:62

RPC Debugging, limitations

- GDB currently requires both processes to be on the same node
 - Integrate at the Eclipse CDT level?
 - Multi-target GDB?
- Network protocol timeouts may be triggered during interactive debugging sessions
 - Increase tremendously the default timeout values when debugging
- How to differentiate generated code from normal source code

Tracing Many-core Processors

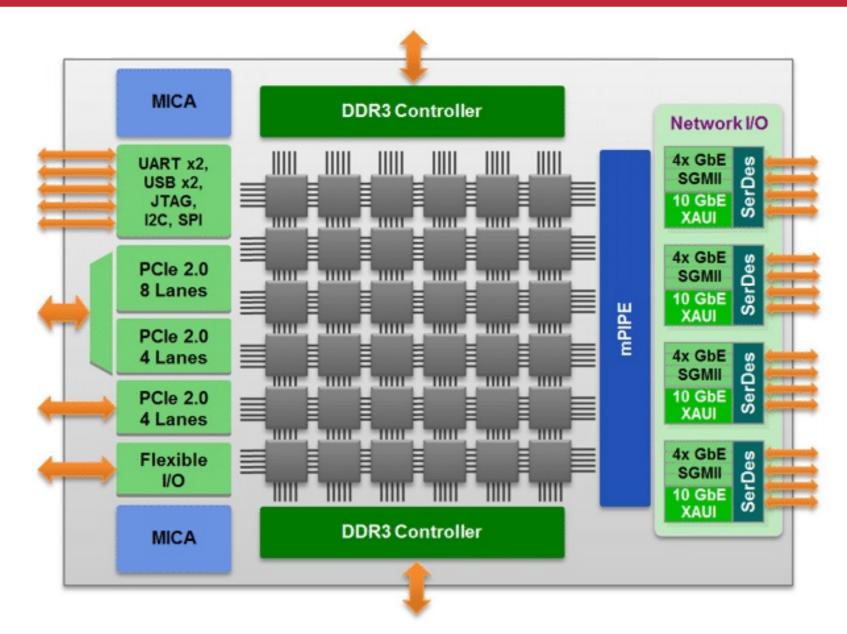
• Many-core processors with tens or hundreds of cores (240 virtual cores on Intel Xeon Phi).

• Highly parallel computing (e.g. GPGPU).

• Scalable performance, energy efficiency.

Many-core Processors Tracing

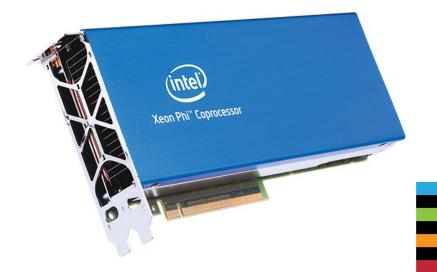
- Tracing, when debugging is too intrusive
- Insert tracepoints in kernel or user space code
- Event generated when a tracepoint is encountered
- Trace: collection of events
- Linux kernel tracers: LTTng, ftrace, SystemTap...


Tilera Many-core Processors

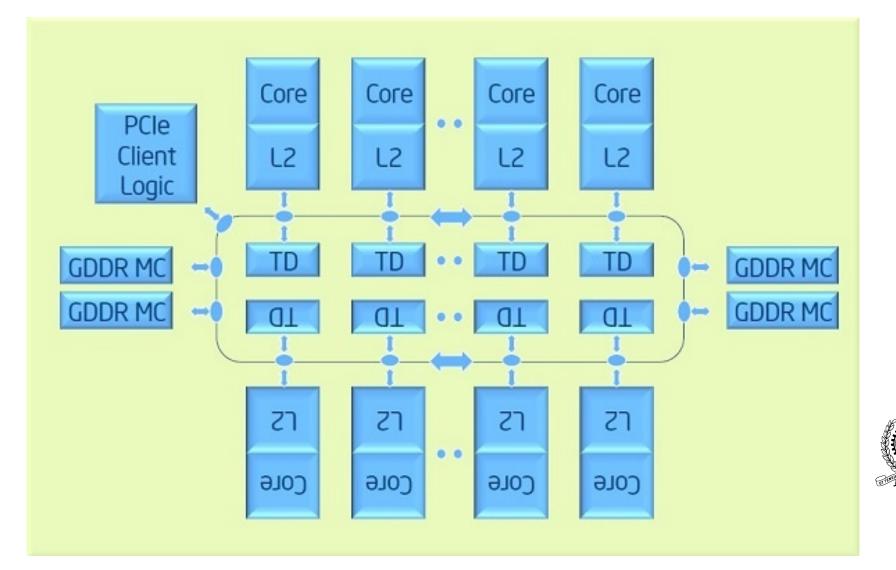
- Tilera TILE-Gx36 (36 cores)
- Standalone or co-processor board
- Typical applications:
 - Multimedia: video encoding and decoding
 - Security: hardware assisted encryption
 - Networking: packet inspection and routing
 - Cloud computing: distributed cache
- 8 Gibi RAM / FS

Source: http://regmedia.co.uk/2012/01/28/tilera_tileencore_adapter.jpg

Tilera Many-core Processors



Source: http://www.wirmax.it/images/prodotti_immagini/mikrotik/tilera36.gif


Xeon Phi Many-Core Processors

- Intel Xeon Phi (57 x 4 logical cores)
- Currently available only as co-processor
- Typical applications:
 - Scientific computing
 - Cluster
- 6 Gibi RAM / FS

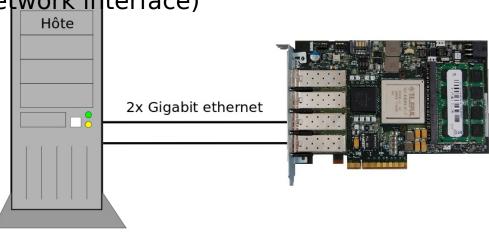
Source: http://spectrum.ieee.org/img/08NIntelPhimaster-1374245245264.jpg

Xeon Phi Many-Core Processors

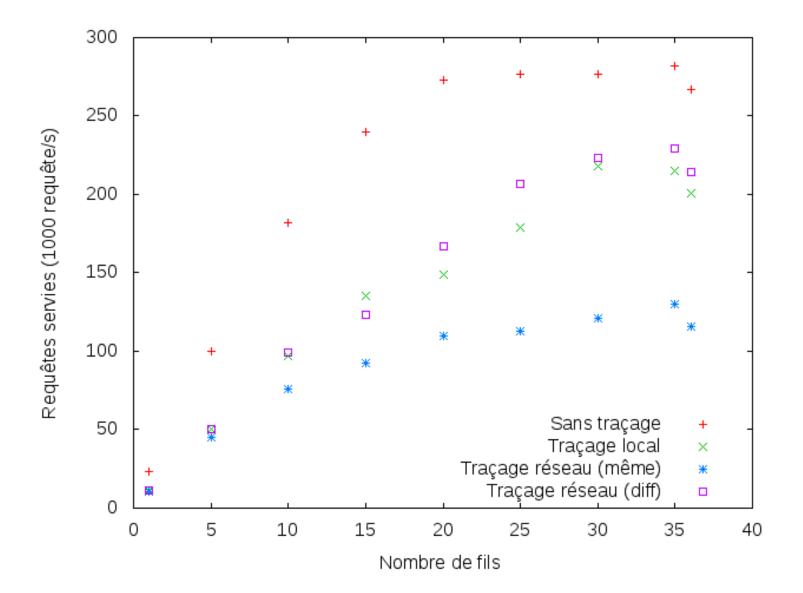
Source: http://img.hexus.net/v2/lowe/News/Intel/phi1.jpg

Tracing Many-core Processors, objectives

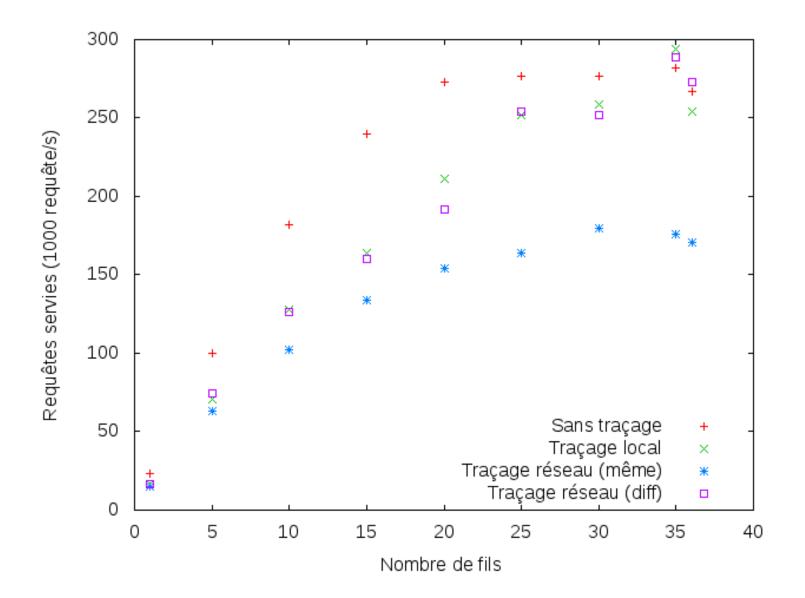
- Porting LTTng to Tilera TILE-Gx and Intel Xeon Phi.
- Evaluate the impact of LTTng on application performance for these many-core processors.


LTTng porting

- Modifications
 - Linux kernel
 - System *tracehook* and system calls tracepoints for TILE-GX
 - LTTng
 - System calls descriptions for TILE-Gx
 - A few other minor issues
 - userspace-rcu
 - Redefine memory barriers for Intel Xeon Phi

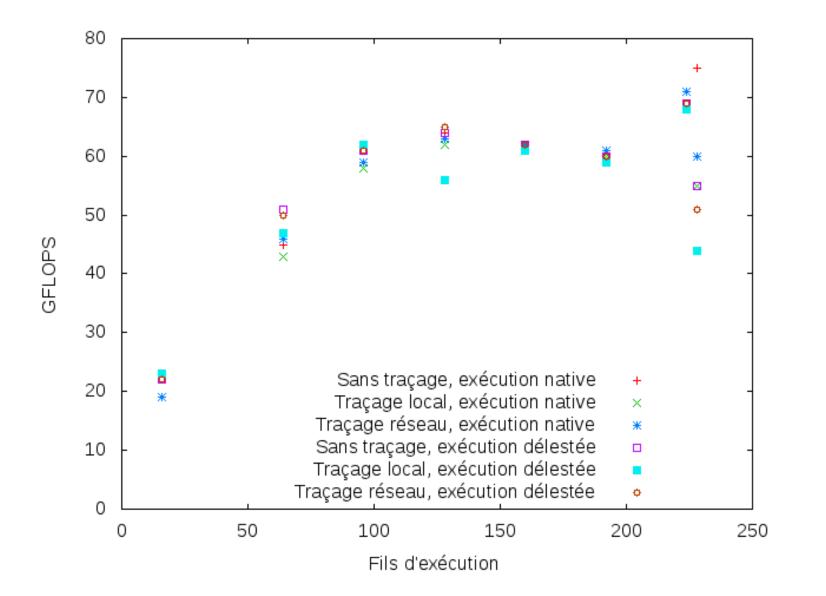


Tilera Many-core Processors, performance tests

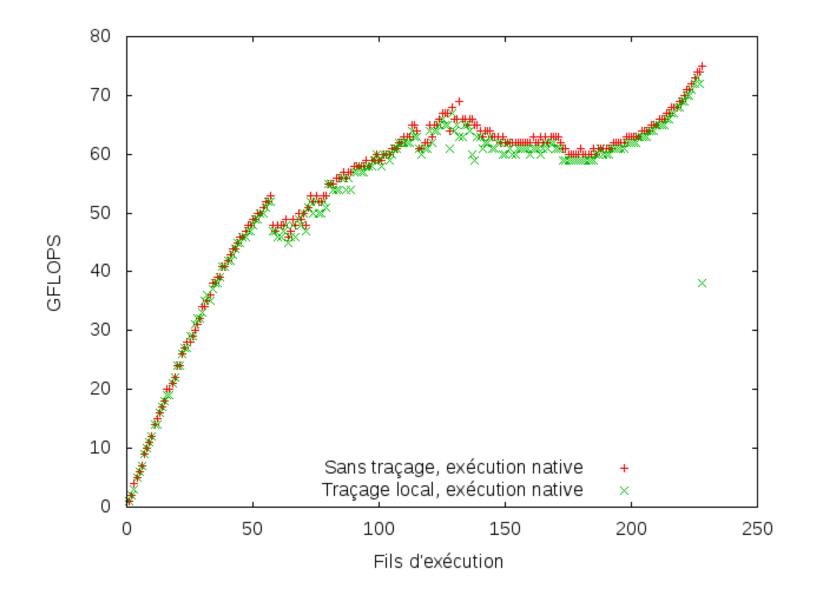

- memcached distributed cache
- Host simulates numerous clients
- 4 tracing modes
 - No tracing
 - Local storage
 - Trace sent over network (same network interface as requests)
 - Trace sent over network (different network interface)
- 2 Events selected
 - All kernel events
 - Small selection of kernel events

Results – Tilera 1

Results – Tilera 2


# fils	Sans traçage	Traça	age local	d Traçage réseau (même)		Traçage réseau (diff)	
		Tous	Réduite	Tous	Réduite	Tous	Réduite
1	-						
5	-			3378659		2456947	
10	-			9137452		9382781	
15	-			14320257		15588129	19310
20	-			18167592	3041	19922867	190202
25	-			20746223	11996	25355095	747052
30	-			23463356	180796	28863393	471267
35	-			23748875	307231	29604835	504430
36	-			24230644	611770	30314552	1164407
							TITUE

Xeon Phi Many-core Processors, performance tests


- Finite elements analysis, diffusion
- 2 execution modes
 - Native execution
 - Offload mode
- 3 tracing modes
 - No tracing
 - Local storage
 - Trace sent over the virtual network (PCI-express)

Results – Xeon Phi 1

Results – Xeon Phi 2

# fils	Exécution native			Exécution avec délestage		
	Sans	Local	Réseau	Sans	Local	Réseau
16						
64						
96						
128					179139	
160						
192						
224			10158			
228		7102686	1247757		2774194	1392009

Tracing Many-core Processors, possible improvements

- Tilera TILE-Gx
 - Use the PCI-express link to transfer tracing data.
- Intel Xeon Phi
 - More demanding applications such as MPI
 - Combined host / target tracing

