
DORSAL Laboratory
Department of Computer and Software Engineering

Debugging and Tracing of
Many-core Processors

Simon Marchi

2

● Introduction

● Remote procedure calls debugging

● Tracing many-core processors

● Conclusion

Plan

3

● Calling functions in a different address space

● Define a logical thread across RPCs

● Syntax similar to regular function calls

● Hidden complexity of remote communications

Remote Procedure Calls (RPC)

4

Remote Procedure Calls, description

1. Encoding input parameters

2. Decoding by server

3. Encoding of output
parameters after remote
execution

4. Decoding of output
parameters and continuation
of normal operation

2
1

3
4

5

● Protocols: ONC (SunRPC), D-Bus, XML-RPC,
Microsoft DCOM and WCF...

● Intel Xeon Phi co-processor: offload mode

● Custom implementation: LTTng, Transmission

● Other: API REST (Web applications)

Remote Procedure Calls, examples

6

● Avoid the need to use two debuggers, see a
partial story on each, and go from one to the
other

● Support different Remote Procedure Call paradigms

● Hide the Remote Procedure Call Machinery

Remote Procedure Calls Debugging, objectives

7

● Microsoft Visual Studio: DCOM and WCF
● Automatically attaches to the server process

● Application-specific proprietary solution

● Intel Xeon Phi: debugging offload mode
● Based on GDB and Eclipse

● Two instances of GDB created by Eclipse

RPC Debugging, existing solutions

8

● Multi-process

● Non-stop mode

● Python extensions
– ☻ Breakpoint and FinishBreakPoint

– ☻ Callbacks on breakpoints

– ☻ Listing threads and processes

– ☻ Thread stack unwinding

– ☻ Dynamically evaluate complex expressions

– ☹ Control the execution of debugged threads

– ☹ Changing the active thread in the interface

RPC Debugging, with GDB ?

9

● Python extensions in GDB

● Four new commands
● step-rpc

– Step checking if a remote procedure call is initiated.

● finish-rpc

– Complete the current remote procedure call and stop.

● backtrace-rpc

– Display the thread stack, combining the functions called within the server
and the calling functions in the client, hiding the RPC layer.

● bind-rpc

– Specify a relation between a client and a server function

● Ex.: ONC, xmlrpc-c, gdbus, LTTng, Transmission.

RPC Debugging, solution overview

10

RPC Debugging, inner working

2
1

3
4

Step Who Event

1 Client RPC initiation

2 Server Server function execution

3 Server End of server function

4 Client Receiving the result and
resuming normal execution

Internal breakpoints

11

RPC Debugging, example backtrace-rpc

Server
#0 do_things at server.c:12
#1 sample_add at server.c:32
#2 callNamedMethod at registry.c:294
#3 xmlrpc_dispatchCall at registry.c:324
#4 xmlrpc_registry_process_call2 at registry.c:413
#5 processCall at xmlrpc_server_abyss.c:475
#6 handleXmlrpcReq at xmlrpc_server_abyss.c:610
#7 runUserHandler at server.c:541
#8 processDataFromClient at server.c:577
#9 serverFunc at server.c:629
#10 connJob at conn.c:39
#11 pthreadStart at thread_pthread.c:49
#12 start_thread at pthread_create.c:301
#13 clone at clone.S:115

Client
#0 __pselect at pselect.c:73
#1 waitForWork at xmlrpc_curl_transport.c:437
#2 finishCurlMulti at xmlrpc_curl_transport.c:570
#3 performCurlTransaction at
 xmlrpc_curl_transport.c:1050
#4 performRpc at xmlrpc_curl_transport.c:1155
#5 call at xmlrpc_curl_transport.c:1376
#6 xmlrpc_client_call2 at xmlrpc_client.c:580
#7 clientCall_va at xmlrpc_client_global.c:147
#8 xmlrpc_client_call at xmlrpc_client_global.c:174
#9 add at client.c:36
#10 main at client.c:62

server - #0 do_things at server.c:12
server - #1 sample_add at server.c:32
client - #2 add at client.c:36
client - #3 main at client.c:62

12

● GDB currently requires both processes to be on the
same node

● Integrate at the Eclipse CDT level?

● Multi-target GDB?

● Network protocol timeouts may be triggered during
interactive debugging sessions

● Increase tremendously the default timeout values when debugging

● How to differentiate generated code from normal
source code

RPC Debugging, limitations

13

● Many-core processors with tens or hundreds of
cores (240 virtual cores on Intel Xeon Phi).

● Highly parallel computing (e.g. GPGPU).

● Scalable performance, energy efficiency.

Tracing Many-core Processors

14

● Tracing, when debugging is too intrusive

● Insert tracepoints in kernel or user space code

● Event generated when a tracepoint is
encountered

● Trace: collection of events

● Linux kernel tracers: LTTng, ftrace,
SystemTap...

Many-core Processors Tracing

15

● Tilera TILE-Gx36 (36 cores)

● Standalone or co-processor board

● Typical applications:
● Multimedia: video encoding and decoding

● Security: hardware assisted encryption

● Networking: packet inspection and routing

● Cloud computing: distributed cache

● 8 Gibi RAM / FS

Tilera Many-core Processors

Source: http://regmedia.co.uk/2012/01/28/tilera_tileencore_adapter.jpg

16

Tilera Many-core Processors

Source: http://www.wirmax.it/images/prodotti_immagini/mikrotik/tilera36.gif

17

● Intel Xeon Phi (57 x 4 logical cores)

● Currently available only as co-processor

● Typical applications:
● Scientific computing

● Cluster

● 6 Gibi RAM / FS

Xeon Phi Many-Core Processors

Source: http://spectrum.ieee.org/img/08NIntelPhimaster-1374245245264.jpg

18

Xeon Phi Many-Core Processors

Source: http://img.hexus.net/v2/lowe/News/Intel/phi1.jpg

19

● Porting LTTng to Tilera TILE-Gx and Intel Xeon Phi.

● Evaluate the impact of LTTng on application
performance for these many-core processors.

Tracing Many-core Processors, objectives

20

● Modifications
● Linux kernel

– System tracehook and system calls tracepoints for TILE-GX

● LTTng

– System calls descriptions for TILE-Gx

– A few other minor issues

● userspace-rcu

– Redefine memory barriers for Intel Xeon Phi

LTTng porting

21

● memcached – distributed cache

● Host simulates numerous clients

● 4 tracing modes
● No tracing

● Local storage

● Trace sent over network (same network interface as requests)

● Trace sent over network (different network interface)

● 2 Events selected
● All kernel events

● Small selection of kernel events

Tilera Many-core Processors, performance tests

22

Results – Tilera 1

23

Results – Tilera 2

24

Tilera – Lost events

25

● Finite elements analysis, diffusion

● 2 execution modes
● Native execution

● Offload mode

● 3 tracing modes
● No tracing

● Local storage

● Trace sent over the virtual network (PCI-express)

Xeon Phi Many-core Processors, performance tests

26

Results – Xeon Phi 1

27

Results – Xeon Phi 2

28

Xeon Phi – Lost events

29

Tracing Many-core Processors, possible improvements

● Tilera TILE-Gx
● Use the PCI-express link to transfer tracing data.

● Intel Xeon Phi
● More demanding applications such as MPI

● Combined host / target tracing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

