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● Calling functions in a different address space

● Define a logical thread across RPCs 

● Syntax similar to regular function calls

● Hidden complexity of remote communications

Remote Procedure Calls (RPC)
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Remote Procedure Calls, description

1. Encoding input parameters

2. Decoding by server

3. Encoding of output 
parameters after remote 
execution

4. Decoding of output 
parameters and continuation 
of normal operation

2
1

3
4
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● Protocols: ONC (SunRPC), D-Bus, XML-RPC, 
Microsoft DCOM and WCF...

● Intel Xeon Phi co-processor: offload mode

● Custom implementation: LTTng, Transmission

● Other: API REST (Web applications)

Remote Procedure Calls, examples
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● Avoid the need to use two debuggers, see a 
partial story on each, and go from one to the 
other

● Support different Remote Procedure Call paradigms 

● Hide the Remote Procedure Call Machinery

Remote Procedure Calls Debugging, objectives
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● Microsoft Visual Studio: DCOM and WCF
● Automatically attaches to the server process

● Application-specific proprietary solution

● Intel Xeon Phi: debugging offload mode
● Based on GDB and Eclipse

● Two instances of GDB created by Eclipse

RPC Debugging, existing solutions
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● Multi-process

● Non-stop mode

● Python extensions
– ☻ Breakpoint and FinishBreakPoint

– ☻ Callbacks on breakpoints

– ☻ Listing threads and processes

– ☻ Thread stack unwinding

– ☻ Dynamically evaluate complex expressions

– ☹ Control the execution of debugged threads

– ☹ Changing the active thread in the interface

RPC Debugging, with GDB ?
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● Python extensions in GDB

● Four new commands
● step-rpc

– Step checking if a remote procedure call is initiated.

● finish-rpc

– Complete the current remote procedure call and stop.

● backtrace-rpc

– Display the thread stack, combining the functions called within the server 
and the calling functions in the client, hiding the RPC layer.

● bind-rpc

– Specify a relation between a client and a server function

● Ex.: ONC, xmlrpc-c, gdbus, LTTng, Transmission.

RPC Debugging, solution overview
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RPC Debugging, inner working

2
1

3
4

Step Who Event

1 Client RPC initiation

2 Server Server function execution

3 Server End of server function

4 Client Receiving the result and 
resuming normal execution

Internal breakpoints
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RPC Debugging, example backtrace-rpc

Server
#0  do_things at server.c:12
#1  sample_add at server.c:32
#2  callNamedMethod at registry.c:294
#3  xmlrpc_dispatchCall at registry.c:324
#4  xmlrpc_registry_process_call2 at registry.c:413
#5  processCall at xmlrpc_server_abyss.c:475
#6  handleXmlrpcReq at xmlrpc_server_abyss.c:610
#7  runUserHandler at server.c:541
#8  processDataFromClient at server.c:577
#9  serverFunc at server.c:629
#10 connJob at conn.c:39
#11 pthreadStart at thread_pthread.c:49
#12 start_thread at pthread_create.c:301
#13 clone at clone.S:115

Client
#0  __pselect at pselect.c:73
#1  waitForWork at xmlrpc_curl_transport.c:437
#2  finishCurlMulti at xmlrpc_curl_transport.c:570
#3  performCurlTransaction at
                      xmlrpc_curl_transport.c:1050
#4  performRpc at xmlrpc_curl_transport.c:1155
#5  call at xmlrpc_curl_transport.c:1376
#6  xmlrpc_client_call2 at xmlrpc_client.c:580
#7  clientCall_va at xmlrpc_client_global.c:147
#8  xmlrpc_client_call at xmlrpc_client_global.c:174
#9  add at client.c:36
#10 main at client.c:62

server - #0 do_things at server.c:12
server - #1 sample_add at server.c:32
client - #2 add at client.c:36
client - #3 main at client.c:62
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● GDB currently requires both processes to be on the 
same node

● Integrate at the Eclipse CDT level?

● Multi-target GDB?

● Network protocol timeouts may be triggered during 
interactive debugging sessions

● Increase tremendously the default timeout values when debugging

● How to differentiate generated code from normal 
source code

RPC Debugging, limitations
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● Many-core processors with tens or hundreds of 
cores (240 virtual cores on Intel Xeon Phi).

● Highly parallel computing (e.g. GPGPU).

● Scalable performance, energy efficiency.

Tracing Many-core Processors
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● Tracing, when debugging is too intrusive

● Insert tracepoints in kernel or user space code

● Event generated when a tracepoint is 
encountered 

● Trace: collection of events

● Linux kernel tracers: LTTng, ftrace, 
SystemTap...

Many-core Processors Tracing
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● Tilera TILE-Gx36 (36 cores)

● Standalone or co-processor board

● Typical applications:
● Multimedia: video encoding and decoding

● Security: hardware assisted encryption

● Networking: packet inspection and routing

● Cloud computing: distributed cache

● 8 Gibi RAM / FS

Tilera Many-core Processors

Source: http://regmedia.co.uk/2012/01/28/tilera_tileencore_adapter.jpg
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Tilera Many-core Processors

Source: http://www.wirmax.it/images/prodotti_immagini/mikrotik/tilera36.gif
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● Intel Xeon Phi (57 x 4 logical cores)

● Currently available only as co-processor

● Typical applications:
● Scientific computing

● Cluster

● 6 Gibi RAM / FS

Xeon Phi Many-Core Processors

Source: http://spectrum.ieee.org/img/08NIntelPhimaster-1374245245264.jpg
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Xeon Phi Many-Core Processors

Source: http://img.hexus.net/v2/lowe/News/Intel/phi1.jpg
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● Porting LTTng to Tilera TILE-Gx and Intel Xeon Phi.

● Evaluate the impact of LTTng on application 
performance for these many-core processors.

Tracing Many-core Processors, objectives
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● Modifications
● Linux kernel

– System tracehook and system calls tracepoints for TILE-GX

● LTTng

– System calls descriptions for TILE-Gx

– A few other minor issues

● userspace-rcu

– Redefine memory barriers for Intel Xeon Phi

LTTng porting
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● memcached – distributed cache

● Host simulates numerous clients

● 4 tracing modes
● No tracing

● Local storage

● Trace sent over network (same network interface as requests)

● Trace sent over network (different network interface)

● 2 Events selected
● All kernel events

● Small selection of kernel events

Tilera Many-core Processors, performance tests
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Results – Tilera 1
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Results – Tilera 2
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Tilera – Lost events
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● Finite elements analysis, diffusion

● 2 execution modes
● Native execution

● Offload mode

● 3 tracing modes
● No tracing

● Local storage

● Trace sent over the virtual network (PCI-express)

Xeon Phi Many-core Processors, performance tests
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Results – Xeon Phi 1
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Results – Xeon Phi 2
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Xeon Phi – Lost events
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Tracing Many-core Processors, possible improvements

● Tilera TILE-Gx
● Use the PCI-express link to transfer tracing data.

● Intel Xeon Phi
● More demanding applications such as MPI

● Combined host / target tracing
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