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« Work done

« Benchmarks

* memcached
* dragon
 hello

* packet processor

* Possible routes for improvement




Work, done and current

 Completed port of LTTng to Tilera

Added support for system call tracing

* Designed benchmarks to evaluate future
Improvements

 Performance analysis to find bottlenecks




Benchmark: memcached

* Network application, a lot of interaction with the
kernel: a lot of kernel events

* It is one of the featured applications on Tilera's
website, so it must work pretty well...




Benchmark: memcached + tracing

Number of requests served by memcached with different tracing modes
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Big traces !

Size of generated traces
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Network streaming hurts

* Saving to ram:

* Streaming on network:




Dragon

* Highly parallel, academic application that draws
a fractal.

* Essentially userspace-only application, very little
interaction with the kernel.




Dragon + kernel tracing

Execution time of "dragon" (10 executions) using 32 threads
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Hello UST test case

Overhead per UST event (amortized on 107 events)

6.04

Time per event (us)
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small event (O payload) big event (~100 bytes payload)
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Hello UST test case

 Two system calls for each UST event

« getcpu

* clock_gettime

¥ sh 1734 1733 | 14:59:34.973649200 | kernel
lttng 1902 | 1734 | 14:59:34.973826046 | kernel
Is 1978 {1734 | 14:59:43.812517080 | kernel

¥ hello 1979 | 1734 | 14:59:48.861891098 | kernel ) get cloc gel cloc
hello 1980 | 1979 | 14:59:48.945762949 | kernel
¥ hello 1981 | 1979 | 14:59:48.946519452 | kernel
hello 1982 | 1981 | 14:59:4B.950836855 | kernel
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Planned: Packet processor

* Use the hardware network packet classifier
available on the processor

* Write a sample application that analyzes
incoming network packets

* Should be a good way to fully utilize all 36 cores
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Possible routes for improvement

* Adapt caching strategy for trace data

* Evaluate impact of tracing on the app's cache hit rate.

* Use huge pages

* Reduce TLB stress

* Analyze memory controllers balance
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Questions ?
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