¥ - Fy.L
M S g, —_—
T =y i Cn
e . M“ L an
i! i] [a8 g x-

l.llrl Hi "‘ o 'WT'
LL] Ef

L | L] T T

=
—

Laboratoire DORSAL
Département de génie informatique

« Work done

« Benchmarks

* memcached
* dragon
 hello

* packet processor

* Possible routes for improvement

Work, done and current

 Completed port of LTTng to Tilera

Added support for system call tracing

* Designed benchmarks to evaluate future
Improvements

 Performance analysis to find bottlenecks

Benchmark: memcached

* Network application, a lot of interaction with the
kernel: a lot of kernel events

* It is one of the featured applications on Tilera's
website, so it must work pretty well...

Benchmark: memcached + tracing

Number of requests served by memcached with different tracing modes

120
S
S 100
e A : s
2 A A
(o]
8 80 ¢ . $ ¢ ¢
3 A
; . M net
3 A ust
S 60 .
3 m . off
- u u m u # ram
[0
5 A -
g 40 .
5 m
1S
5
g 20
1S
3 A

0

0 5 10 15 20 25 30 35

Number of memcached threads

Big traces !

Size of generated traces

70
L 2
60
L 2
L 2
2 50 *
M L 2
=3
©
S 40 - m =
3 * [| M net
g u @ ram
2
g 30 S m
o
[0]
2
o 20
<

£ n
@

10

[]
0
0 5 10 15 20 25 30 35

Number of memcached threads

Network streaming hurts

* Saving to ram:

* Streaming on network:

Dragon

* Highly parallel, academic application that draws
a fractal.

* Essentially userspace-only application, very little
interaction with the kernel.

Dragon + kernel tracing

Execution time of "dragon" (10 executions) using 32 threads

25

20.51

15

Time (s)

10

(&)

tracing on tracing off

Hello UST test case

Overhead per UST event (amortized on 107 events)

6.04

Time per event (us)

N

-_—

small event (O payload) big event (~100 bytes payload)

10

Hello UST test case

 Two system calls for each UST event

« getcpu

* clock_gettime

¥ sh 1734 1733 | 14:59:34.973649200 | kernel
lttng 1902 | 1734 | 14:59:34.973826046 | kernel
Is 1978 {1734 | 14:59:43.812517080 | kernel

¥ hello 1979 | 1734 | 14:59:48.861891098 | kernel) get cloc gel cloc
hello 1980 | 1979 | 14:59:48.945762949 | kernel
¥ hello 1981 | 1979 | 14:59:48.946519452 | kernel
hello 1982 | 1981 | 14:59:4B.950836855 | kernel

11

Planned: Packet processor

* Use the hardware network packet classifier
available on the processor

* Write a sample application that analyzes
incoming network packets

* Should be a good way to fully utilize all 36 cores

12

Possible routes for improvement

* Adapt caching strategy for trace data

* Evaluate impact of tracing on the app's cache hit rate.

* Use huge pages

* Reduce TLB stress

* Analyze memory controllers balance

13

Questions ?

14

	Slide 1
	Concepts généraux
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

