High-performance tracing of many-core systems with LTTng

Laboratoire DORSAL Département de génie informatique POLYTECHNIQUE MONTRÉAL

Outline

- Work done
- Benchmarks
 - memcached
 - dragon
 - hello
 - packet processor
- Possible routes for improvement

Work, done and current

- Completed port of LTTng to Tilera
 - Added support for system call tracing
- Designed benchmarks to evaluate future improvements

• Performance analysis to find bottlenecks

Benchmark: memcached

 Network application, a lot of interaction with the kernel: a lot of kernel events

• It is one of the featured applications on Tilera's website, so it must work pretty well...

Benchmark: memcached + tracing

Number of requests served by memcached with different tracing modes

Big traces !

Size of generated traces

6

Network streaming hurts

• Saving to ram:

• Streaming on network:

- Highly parallel, academic application that draws a fractal.
- Essentially userspace-only application, very little interaction with the kernel.

Dragon + kernel tracing

Execution time of "dragon" (10 executions) using 32 threads

Hello UST test case

Overhead per UST event (amortized on 10^{^7} events)

Hello UST test case

- Two system calls for each UST event
 - getcpu
 - clock_gettime

 dropbear 	1733	1673	14:59:34.973644427	kernel		
▼ sh	1734	1733	14:59:34.973649200	kernel		
lttng	1902	1734	14:59:34.973826046	kernel		
ls	1978	1734	14:59:43.812517080	kernel		
▼ hello	1979	1734	14:59:48.861891098	kernel	clo get cloc	get cloc
hello	1980	1979	14:59:48.945762949	kernel		
▼ halla	1001	1070	14-50-40 046540452	karnal		
▼ neilo	1981	1979	14:59:48.946519452	Kernei		
hello	1981 1982	1979 1981	14:59:48.946519452 14:59:48.950836855	kernel		

Planned: Packet processor

• Use the hardware network packet classifier available on the processor

• Write a sample application that analyzes incoming network packets

Should be a good way to fully utilize all 36 cores

Possible routes for improvement

- Adapt caching strategy for trace data
 - Evaluate impact of tracing on the app's cache hit rate.

- Use huge pages
 - Reduce TLB stress

Analyze memory controllers balance

Questions ?

