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• Research questions
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Research questions

• “How to trace and analyze a request in cloud environment at the

kernel level? If impossible at the kernel level, how to minimally

instrument the application’s source code and middleware?”

• “Is it possible to predict the associated overhead of tracing tools 

based on the traffic workloads?”



Possible contributions

• The overall objective:
“Provide efficient analysis algorithms and tools in order to know exactly how a

request is serviced in modern cloud-based systems and to collect the time spent on

many services in the cloud”.

• Possible contributions:
• An automated method of following a request without instrumenting the application’s

source code or special RPC libraries itself in cloud environment.

• A method to select and study user requests of interest based on the system model

and other parameter, such as: set of activated probes, sampling rate or traffic

workload.

• Algorithms and views to analyze the Asynchronous RPC transaction data in cloud

environment



Literature review



Literature review

• Approaches to white-box tracing
• require the knowledge of application or middleware

• Tracepoints

• Request ID propagation

• Statistical approaches to black-box tracing
• Events are collected from communications: incoming, outgoing 

messages. 

• Imprecise method.

• Precise approaches to black-box tracing
• Does not require to modify the application’s source code

• Insufficient to obtain the traditional trace data.

• 3 solutions so far: vPath[4], BorderPatrol[5], PreciseTracer[6]



Literature review
Tracing 

Infrastructures

Use cases Accuracy 

Tracing

Sampling 

technique

Scalability Operation 

mode

Dapper Distributed profiling

Diagnosing bottlenecks

Precise Yes

(Adaptive sampling)

Yes Offline

Online(limited)

Zipkin Distributed profiling

Diagnosing bottlenecks

Precise Yes

(Uniform sampling)

Yes Offline

Magpie Anomaly detection

Workload modelling

Precise No No Online/Offline

X-Trace Diagnosing bottlenecks Precise No

Whodunit Distributed profiling Precise No

Pip Diagnosing bottlenecks Precise No No Offline

Pinpoint Anomaly detection

Diagnosing bottlenecks

Precise No Online

Stardust Diagnosing bottlenecks

Workload modelling

Precise No

E2Eprof Diagnosing bottlenecks

Anomaly detection

Imprecise No No Online

Project 5 Diagnosing bottlenecks Imprecise No No Offline

WAP5 Diagnosing bottlenecks Imprecise

But per process

No No Offline

BorderPatrol Diagnosing bottlenecks Precise No No Offline

vPath Diagnosing bottlenecks Precise No No Offline

PreciseTracer Diagnosing bottlenecks Precise Yes Yes Online



Zipkin[2] – A distributed tracing framework

• Why Zipkin?
• Helping developers gain deeper knowledge about how certain requests 

perform in a distributed system.

• Helping developers gather timing data for the disparate services at 

Twitter.



Zipkin – Architecture



Finagle in Zipkin
• A core module of Zipkin.

• Finagle is an asynchronous network stack for the JVM that we can use to build 

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-

hosted language.

github.com/twitter/finagle



Zipkin UI



Google’s Dapper 



Google’s Dapper[1] 

• Collect traces from production requests

• Low overhead

• Minimum of extra work for developer 



Magpie[3] 
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System model and problem statement

• System model:
• Large clusters: disparate services, each service is running on one node.

• Each node (component) can serve many requests in a certain period.

• Treat each component as a grey-box (minimize the instrumentation of 

application source code and middleware).

• Problem statement:
• Asynchronous communication between nodes (components).

• Support event-driven architecture (like Finagle at Twitter)

• On each component: 

• More  than one threads to serve a request.

• threads can be used many times (reused).



System architecture

Coordinator

Collector

Collector

Collector

Trace 

Analyzer
ViewCorrelator



System architecture

• Collector:
• What information do we capture?

• Inter-process communication between components:
• Domain name, Timestamp, Sender_IP, Sender_Port, Receiver_IP, Receiver_Port, 

Message Size

• Track the thread (Tid) performing the system call over the incoming, 
outgoing TCP connections.

• Resource accounting for above thread (Tid) such as context switching 
and blocking on network.



Approach

• How do we trace a request?

• Design goals:

• Determine which events from the stream pertain to a specific request?

• Minimize the instrumentation for several types of RPC.

• Problems:

• The thread may post the same event for any number of different requests.

• More than one threads to serve a request.

• Solution: Using event-schema to describe event relationships for the

particular application service, middleware of interest. (do not require to

instrument the application or middleware).



Algorithm
• Event-schema:

• Specify which attribute of event connect to other events.

• Identify each execution interval: BIND_START, BIND_STOP, BIND_BASIC[3]

• Example: 

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_START, 0);

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_BASIC, 0);

• ATTRIBUTE(" WebserverID ", BIND_BASIC, 0);

• EVENT(" HttpRequest ", "End");

• ATTRIBUTE("ThreadId", BIND_BASIC, 0);

• ATTRIBUTE(“WebserverID", BIND_BASIC, 0);

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_STOP, 0);

• Temporal join:
• Following of a request as queries against a temporal database: each table holds the events of a

given type.

• During a valid-interval (BIND_START and BIND_STOP) , events are joined together based on
the join attribute between them (WebserverID) in above example of event schema.



Case study

• Simple multi-tiers environment: 

• web application (mediawiki), web servers (apache), Database 

(MariaDB). And including Memcached.

Nginx Load 

balancer

Apache, 

Memcached

Apache, 

Memcached

MySQL/Maria

DB

MySQL/Maria

DBApache 



Case study

• Cloud platform: Openstack



Future work



Future work

• Build a new add-on for LTTng to trace incoming message 

and outgoing message at the kernel level. 

• Track an incoming message within one component.

• Applying proposed approach to generate the execution 

path of request in a simple web application (web server 

farm included).

• Build a new plug-in for eclipse to see the request path.

• Implement the approach for the Openstack platform.

• Applying mathematical models (Kalman filter,…) to build a 

new adaptive sampling mechanism based on the traffic 

workloads.



Challenges



Challenges

• Support Synchronous/Asynchronous communication between components

and within one component: a request can involve execution across threads

and process boundaries within one component.

• Collect the events of Linux kernel network stack on one component.

• Simplify the event-schema as compared to Magpie.

• Improve and optimize the solutions for existing problems.
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