PRECISELY TRACE A REQUEST IN CLOUD

ENVIRONMENT

..;:,,, —,,_,‘\“-,‘ POLYTECHNIQUE
ﬁ\ ;5 MONTREAL

N

NGl LE GENIE
@R EN PREMIERE CLASSE

Progress report meeting
December 2013

Phuong Tran Gia
gia-phuong.tran@polymtl.ca

Under the supervision of Prof. Michel R. Dagenais
Dorsal Laboratory, Polytechnique Montréal

mailto:gia-phuong.tran@polymtl.ca
mailto:gia-phuong.tran@polymtl.ca
mailto:gia-phuong.tran@polymtl.ca

Outline

- Research objectives
- Literature review

- Methodology

- Future work

- Challenges

Research objectives

Research objectives

- Research guestions
- Possible contributions

Research questions

- “How to trace and analyze a request in cloud environment at the
kernel level? If impossible at the kernel level, how to minimally
instrument the application’s source code and middleware?”

- “Is it possible to predict the associated overhead of tracing tools
based on the traffic workloads?”

Possible contributions

- The overall objective:

“Provide efficient analysis algorithms and tools in order to know exactly how a
request is serviced in modern cloud-based systems and to collect the time spent on
many services in the cloud”.

- Possible contributions:

- An automated method of following a request without instrumenting the application’s
source code or special RPC libraries itself in cloud environment.

- A method to select and study user requests of interest based on the system model
and other parameter, such as: set of activated probes, sampling rate or traffic
workload.

- Algorithms and views to analyze the Asynchronous RPC transaction data in cloud
environment

| iterature review

| iterature review

- Approaches to white-box tracing
- require the knowledge of application or middleware
- Tracepoints
- Request ID propagation
- Statistical approaches to black-box tracing

- Events are collected from communications: incoming, outgoing
messages.

- Imprecise method.
- Precise approaches to black-box tracing
- Does not require to modify the application’s source code

- Insufficient to obtain the traditional trace data.
- 3 solutions so far: vPath!4, BorderPatrol®!, PreciseTracerl®!

L
L iterature review

Dapper
Zipkin
Magpie
X-Trace
Whodunit
Pip
Pinpoint
Stardust
E2Eprof

Project 5

WAP5

BorderPatrol
vPath

PreciseTracer

Distributed profiling
Diagnosing bottlenecks

Distributed profiling
Diagnosing bottlenecks

Anomaly detection
Workload modelling

Diagnosing bottlenecks
Distributed profiling
Diagnosing bottlenecks

Anomaly detection
Diagnosing bottlenecks

Diagnosing bottlenecks
Workload modelling

Diagnosing bottlenecks
Anomaly detection

Diagnosing bottlenecks

Diagnosing bottlenecks

Diagnosing bottlenecks
Diagnosing bottlenecks

Diagnosing bottlenecks

Precise

Precise

Precise

Precise

Precise

Precise

Precise

Precise

Imprecise

Imprecise

Imprecise
But per process

Precise
Precise

Precise

Yes
(Adaptive sampling)

Yes
(Uniform sampling)

No

No
No
No

No

No

No

No

No

No
No

Yes

Yes

Yes

No

No

No

No

No

No

No

Yes

Offline
Online(limited)
Offline

Online/Offline

Offline

Online

Online

Offline

Offline

Offline
Offline

Online

Zipkinl? — A distributed tracing framework

- Why Zipkin?
- Helping developers gain deeper knowledge about how certain requests
perform in a distributed system.
- Helping developers gather timing data for the disparate services at
Twitter.

Z|1PKIN

Zipkin — Architecture

Traced
Service

Collector Query |—» Web

ZooKeeper

Finagle in Zipkin

- A core module of Zipkin.

- Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle

Zipkin Ul

Overview Timeline

WEB CLUSTER
QUICKIE SERVICE
WEB SERVER

S0ME SERVICE
MEMGACHED
§ MEMCACHED
BIG ASS SERVICE

e THINGIE

OTHER DATA SERVICE
§ MEMCACHED

n MEMCACHED

FINAL DATA SERVICE

§ MEMCACHED

§ MEMCACHED

a MEMCACHED

Q, Find a trace

Dependencies

oms 10ms

(C12.818 GET
1,571 gimma_stuff
109.358 GET
o
'.2?9 Get
|.319 Incr

Search term (service)

s0ms

o [112819ms

100ms

110ms

- getStuff

Id 35 getMoar

o]

L
Google’s Dapper

dapper-2010.pdf

Google’s Dapper!!]

- Collect traces from production requests
- Low overhead
- Minimum of extra work for developer

1 Job Selection ©®

Start Date: [65/06/2008

Start Hour: o9 @

End Date: [55/06/2008

Id & Calls @

Total
(ms) &

All® 40,990,720 (100.00%) 139,773,132.8 (100.00%) 4,098,118 (100.00%)

Global Local

90%ile 90%ile
Contribution (gj
(count) © ~

8.91

Absolute Scaled
Histogram Histogram
(ms) &

A e

(ms) &

End Hour: [10 ®

View
(2]

450,880 (8. 437,312.0 (28. 1,918, 81 194 } 0
Ciuster [Smeans H E 3,450,880 (8.42%) 39,437,312.0 (28.22%) 918,437 (46.81%) 9.17 ‘ L . 2
User: usert2a = R 1658880 (4.05%) 55939,686.4 (40.02%) 1,658,880 (40.48%) 47.21 ‘ I View
Job: jobXYZ | . = |
Node Information Simplified Call Tree ©
I User Viewing Execution Pattern: E
 RPC or Span Name frontend 2M —
™ Job (ms)~ (ms) TrCe O
[~ Cluster 3 ™ 4 5150 66.00 Example
40.20 5150 Example
Cost Metric ® 3140 4020 Example |
= getdocs 2450 3140 Example
LEney & o0 2450 3140 Example |
¢ Parent Latency ® : 2450 3140 Example
¢ Request Size & l thing1 ‘ ‘ thing2 ‘ ‘ helper1 ‘ 2450 3140 Example |
" Response Size ® 0 - 2450 3140 Example |4
¢ Recursive Size ® 2ms 3ms 7ms 10ms 20ms 40ms 80ms 19.10 2450 Example ¥
z . helper2
¢ Recursive Queue Time ©
5 0 Sms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms
v Info Annotatons poacd8/ web mixerserve * pohhd8/ m.s.rascorer getdocs
] Info Annotations pohh38/ ms.rascorer —* poani3/ m.c.cacheserver thingl
El | — Info Annotations pohh38/ m.s.r.a r ~* poab23/ m.s.p.ascorer helpert
] 1 —— Info Annotations pohh38/ m.s.r.ascorer - poacQ/ m.s.p.ascorer helpert
v B8] Info Annotations pohh38/ m.s.rascorer ~* poah38/ m.s.p.ascorer helperi
] Info Annotatons poah38/ m.s.p.ascorer ~* poah15/ ms.lascorer helper2
il } Info Annotations poah38/ m.s.p.ascorer ~* poah21/ m.s.Lascorer helper2
| — — Info Annotations poah38/ m.s.p.ascorer ~* poah17/ ms.lascorer helper2
| Info Annotatons pohh38/ m.s.rascorer ~* poail0/ m.s.p.ascorer helpert
®] Info Annotations hh38/ m.s.r.a: r ~* p0ao22/ ms.p.a ¢ helpert
+ |0 Info Annotations hh38/ m.s.r. [10/ m.s | ¢ helper1
] | p— Info Annotations pohh38/ m.s.r.ascorer ~* poawl2/ m.s.p.ascorer helpert

dapper-2010.pdf

Magpiel3!

H wxvisual

Con-xTb0ssan]
CorrGra0z5000]

onn=0x2b0Z2d0
onn=0x Bl
Http ld=0wE843h01
=api ld=0x 07 be
ne=0x 2 b0 2240
Synic=0xdf

iIIW

e
Fl
i
=]
=
o
g
!
i
Ll

WNc

s
2 ld=11545

Incoming HTTP
request packet

HTTP response
packet and ACK

H - o— ¥
o [~ —
i =3 i =
== T
o E =7 D ST =
= [3] =3 L= =1 =
& 2 23k -
= S._E_izm-n g
2 iy =
i = o] o & 5 5 13
= =
= B :3% =3
ad B£ = =
3 - i = 1 E
=

DPCs (opul

Cpuld=

ol

C RlGIGELE
E IEE E
L=y BEL] =

S IEIRIEIEELE

[«

Print Setup

[TIMESTAMP

TIMELIME

DESCRIPTION

22 .984m]

/

Network stack
runs in DPC

ASP.NET worker

Jaauunas| grd |

2Z00796276352286 : 2200798347305425 2

Methodology

L
Methodology

- System model and problem statement
- System architecture

- Temporal Join Algorithm

- Case study

System model and problem statement

- System model:
- Large clusters: disparate services, each service is running on one node.
- Each node (component) can serve many requests in a certain period.

- Treat each component as a grey-box (minimize the instrumentation of
application source code and middleware).

- Problem statement:
- Asynchronous communication between nodes (components).
- Support event-driven architecture (like Finagle at Twitter)

- On each component:
- More than one threads to serve a request.
- threads can be used many times (reused).

System architecture

) Trace)
Coordinator H Correlator View

(_Collector]

System architecture

- Collector:
- What information do we capture?

- Inter-process communication between components:

- Domain name, Timestamp, Sender_IP, Sender_Port, Receiver_IP, Receiver_Port,
Message Size

- Track the thread (Tid) performing the system call over the incoming,
outgoing TCP connections.

- Resource accounting for above thread (Tid) such as context switching
and blocking on network.

L
Approach

- How do we trace a request?

- Design goals:

- Determine which events from the stream pertain to a specific request?

- Minimize the instrumentation for several types of RPC.

- Problems:

- The thread may post the same event for any number of different requests.

- More than one threads to serve a request.
- Solution: Using event-schema to describe event relationships for the

particular application service, middleware of interest. (do not require to

instrument the application or middleware).

L
Algorithm

- Event-schema:
- Specify which attribute of event connect to other events.
- |dentify each execution interval: BIND _START, BIND_STOP, BIND _BASICI3I
- Example:

- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_START, 0);

- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_BASIC, 0);

- ATTRIBUTE(" WebserverID ", BIND_BASIC, 0);
- EVENT(" HttpRequest ", "End");

- ATTRIBUTE("Threadld", BIND_BASIC, 0);

- ATTRIBUTE(“WebserverID", BIND_BASIC, 0);
- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_STOP, 0);

Temporal join:
- Following of a request as queries against a temporal database: each table holds the events of a
given type.

During a valid-interval (BIND_START and BIND_STOP) , events are joined together based on
the join attribute between them (WebserverID) in above example of event schema.

L
Case study

- Simple multi-tiers environment:

- web application (mediawiki), web servers (apache), Database
(MariaDB). And including Memcached.

Apache,
Memcached

e -—-a & U

MySQL/Maria Nginx Load

Apache DB balancer MySQL/Maria

DB

Apache,
Memcached

L
Case study

- Cloud platform: Openstack

Your Applications

D) = OPENSTACK

DpenStack Dashboard .--'-""'.'--- * *.-i-i-i
il ll'.l -
LT \ Ayt
Compute Metwerking \ Starage
— — \ Ly

I
{ OpenStack Shared Services
L

Standard Hardware

Future work

Future work

- Build a new add-on for LTTng to trace incoming message
and outgoing message at the kernel level.

- Track an incoming message within one component.

- Applying proposed approach to generate the execution
path of request in a simple web application (web server
farm included).

- Build a new plug-in for eclipse to see the request path.
- Implement the approach for the Openstack platform.

- Applying mathematical models (Kalman filter,...) to build a
new adaptive sampling mechanism based on the traffic
workloads.

Challenges

Challenges

Support Synchronous/Asynchronous communication between components
and within one component: a request can involve execution across threads
and process boundaries within one component.

Collect the events of Linux kernel network stack on one component.
Simplify the event-schema as compared to Magpie.

Improve and optimize the solutions for existing problems.

L
References

[1] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul
Jaspan, Chandan Shanbhag, “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure”, Google Technical
Report dapper-2010-1, April 2010

[2] Twitter Zipkin. A Distributed Tracing System, https://github.com/twitter/zipkin, 2012.

[3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: on-line modelling and performance-aware systems.
In 9th Workshop on Hot Topics in Operating Systems (HotOS 1X), pages 85-90, May 2003.
[4] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N. Chang, “vPath: precise discovery of request

processing paths from blackbox observations of thread and network activities,” in Proceedings of the 2009
onference on USENIX Annual technical conference, 2009, p. 19-19.

[5] E. Koskinen and J. Jannotti, “Borderpatrol: isolating events for black-box tracing,” in ACM SIGOPS Operating
Systems Review, 2008, vol. 42, pp. 191-203.

[6] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, and Z. Zhang, “Precise, scalable, and online request tracing
for multi-tier services of black boxes,” IEEE Transactions on Parallel and Distributed Systems, no. 99, p. 1-1, 2010.

Thank youl!

Questions?

