
PRECISELY TRACE A REQUEST IN CLOUD

ENVIRONMENT

Progress report meeting

December 2013

Phuong Tran Gia

gia-phuong.tran@polymtl.ca

Under the supervision of Prof. Michel R. Dagenais

Dorsal Laboratory, Polytechnique Montréal

mailto:gia-phuong.tran@polymtl.ca
mailto:gia-phuong.tran@polymtl.ca
mailto:gia-phuong.tran@polymtl.ca

Outline

• Research objectives

• Literature review

• Methodology

• Future work

• Challenges

Research objectives

Research objectives

• Research questions

• Possible contributions

Research questions

• “How to trace and analyze a request in cloud environment at the

kernel level? If impossible at the kernel level, how to minimally

instrument the application’s source code and middleware?”

• “Is it possible to predict the associated overhead of tracing tools

based on the traffic workloads?”

Possible contributions

• The overall objective:
“Provide efficient analysis algorithms and tools in order to know exactly how a

request is serviced in modern cloud-based systems and to collect the time spent on

many services in the cloud”.

• Possible contributions:
• An automated method of following a request without instrumenting the application’s

source code or special RPC libraries itself in cloud environment.

• A method to select and study user requests of interest based on the system model

and other parameter, such as: set of activated probes, sampling rate or traffic

workload.

• Algorithms and views to analyze the Asynchronous RPC transaction data in cloud

environment

Literature review

Literature review

• Approaches to white-box tracing
• require the knowledge of application or middleware

• Tracepoints

• Request ID propagation

• Statistical approaches to black-box tracing
• Events are collected from communications: incoming, outgoing

messages.

• Imprecise method.

• Precise approaches to black-box tracing
• Does not require to modify the application’s source code

• Insufficient to obtain the traditional trace data.

• 3 solutions so far: vPath[4], BorderPatrol[5], PreciseTracer[6]

Literature review
Tracing

Infrastructures

Use cases Accuracy

Tracing

Sampling

technique

Scalability Operation

mode

Dapper Distributed profiling

Diagnosing bottlenecks

Precise Yes

(Adaptive sampling)

Yes Offline

Online(limited)

Zipkin Distributed profiling

Diagnosing bottlenecks

Precise Yes

(Uniform sampling)

Yes Offline

Magpie Anomaly detection

Workload modelling

Precise No No Online/Offline

X-Trace Diagnosing bottlenecks Precise No

Whodunit Distributed profiling Precise No

Pip Diagnosing bottlenecks Precise No No Offline

Pinpoint Anomaly detection

Diagnosing bottlenecks

Precise No Online

Stardust Diagnosing bottlenecks

Workload modelling

Precise No

E2Eprof Diagnosing bottlenecks

Anomaly detection

Imprecise No No Online

Project 5 Diagnosing bottlenecks Imprecise No No Offline

WAP5 Diagnosing bottlenecks Imprecise

But per process

No No Offline

BorderPatrol Diagnosing bottlenecks Precise No No Offline

vPath Diagnosing bottlenecks Precise No No Offline

PreciseTracer Diagnosing bottlenecks Precise Yes Yes Online

Zipkin[2] – A distributed tracing framework

• Why Zipkin?
• Helping developers gain deeper knowledge about how certain requests

perform in a distributed system.

• Helping developers gather timing data for the disparate services at

Twitter.

Zipkin – Architecture

Finagle in Zipkin
• A core module of Zipkin.

• Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-

hosted language.

github.com/twitter/finagle

Zipkin UI

Google’s Dapper

Google’s Dapper[1]

• Collect traces from production requests

• Low overhead

• Minimum of extra work for developer

Magpie[3]

Methodology

Methodology

• System model and problem statement

• System architecture

• Temporal Join Algorithm

• Case study

System model and problem statement

• System model:
• Large clusters: disparate services, each service is running on one node.

• Each node (component) can serve many requests in a certain period.

• Treat each component as a grey-box (minimize the instrumentation of

application source code and middleware).

• Problem statement:
• Asynchronous communication between nodes (components).

• Support event-driven architecture (like Finagle at Twitter)

• On each component:

• More than one threads to serve a request.

• threads can be used many times (reused).

System architecture

Coordinator

Collector

Collector

Collector

Trace

Analyzer
ViewCorrelator

System architecture

• Collector:
• What information do we capture?

• Inter-process communication between components:
• Domain name, Timestamp, Sender_IP, Sender_Port, Receiver_IP, Receiver_Port,

Message Size

• Track the thread (Tid) performing the system call over the incoming,
outgoing TCP connections.

• Resource accounting for above thread (Tid) such as context switching
and blocking on network.

Approach

• How do we trace a request?

• Design goals:

• Determine which events from the stream pertain to a specific request?

• Minimize the instrumentation for several types of RPC.

• Problems:

• The thread may post the same event for any number of different requests.

• More than one threads to serve a request.

• Solution: Using event-schema to describe event relationships for the

particular application service, middleware of interest. (do not require to

instrument the application or middleware).

Algorithm
• Event-schema:

• Specify which attribute of event connect to other events.

• Identify each execution interval: BIND_START, BIND_STOP, BIND_BASIC[3]

• Example:

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_START, 0);

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_BASIC, 0);

• ATTRIBUTE(" WebserverID ", BIND_BASIC, 0);

• EVENT(" HttpRequest ", "End");

• ATTRIBUTE("ThreadId", BIND_BASIC, 0);

• ATTRIBUTE(“WebserverID", BIND_BASIC, 0);

• EVENT(“HttpRequest", "Start");

• ATTRIBUTE("TId", BIND_STOP, 0);

• Temporal join:
• Following of a request as queries against a temporal database: each table holds the events of a

given type.

• During a valid-interval (BIND_START and BIND_STOP) , events are joined together based on
the join attribute between them (WebserverID) in above example of event schema.

Case study

• Simple multi-tiers environment:

• web application (mediawiki), web servers (apache), Database

(MariaDB). And including Memcached.

Nginx Load

balancer

Apache,

Memcached

Apache,

Memcached

MySQL/Maria

DB

MySQL/Maria

DBApache

Case study

• Cloud platform: Openstack

Future work

Future work

• Build a new add-on for LTTng to trace incoming message

and outgoing message at the kernel level.

• Track an incoming message within one component.

• Applying proposed approach to generate the execution

path of request in a simple web application (web server

farm included).

• Build a new plug-in for eclipse to see the request path.

• Implement the approach for the Openstack platform.

• Applying mathematical models (Kalman filter,…) to build a

new adaptive sampling mechanism based on the traffic

workloads.

Challenges

Challenges

• Support Synchronous/Asynchronous communication between components

and within one component: a request can involve execution across threads

and process boundaries within one component.

• Collect the events of Linux kernel network stack on one component.

• Simplify the event-schema as compared to Magpie.

• Improve and optimize the solutions for existing problems.

References
• [1] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul

Jaspan, Chandan Shanbhag, “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure”, Google Technical

Report dapper-2010-1, April 2010

• [2] Twitter Zipkin. A Distributed Tracing System, https://github.com/twitter/zipkin, 2012.

• [3] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: on-line modelling and performance-aware systems.

In 9th Workshop on Hot Topics in Operating Systems (HotOS IX), pages 85–90, May 2003.

• [4] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N. Chang, “vPath: precise discovery of request

processing paths from blackbox observations of thread and network activities,” in Proceedings of the 2009

onference on USENIX Annual technical conference, 2009, p. 19–19.

• [5] E. Koskinen and J. Jannotti, “Borderpatrol: isolating events for black-box tracing,” in ACM SIGOPS Operating

Systems Review, 2008, vol. 42, pp. 191–203.

• [6] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, and Z. Zhang, “Precise, scalable, and online request tracing

for multi-tier services of black boxes,” IEEE Transactions on Parallel and Distributed Systems, no. 99, p. 1–1, 2010.

Thank you!

Questions?

