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Research questions

- “How to trace and analyze a request in cloud environment at the
kernel level? If impossible at the kernel level, how to minimally
instrument the application’s source code and middleware?”

- “Is it possible to predict the associated overhead of tracing tools
based on the traffic workloads?”



Possible contributions

- The overall objective:

“Provide efficient analysis algorithms and tools in order to know exactly how a
request is serviced in modern cloud-based systems and to collect the time spent on
many services in the cloud”.

- Possible contributions:

- An automated method of following a request without instrumenting the application’s
source code or special RPC libraries itself in cloud environment.

- A method to select and study user requests of interest based on the system model
and other parameter, such as: set of activated probes, sampling rate or traffic
workload.

- Algorithms and views to analyze the Asynchronous RPC transaction data in cloud
environment
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| iterature review

- Approaches to white-box tracing
- require the knowledge of application or middleware
- Tracepoints
- Request ID propagation
- Statistical approaches to black-box tracing

- Events are collected from communications: incoming, outgoing
messages.

- Imprecise method.
- Precise approaches to black-box tracing
- Does not require to modify the application’s source code

- Insufficient to obtain the traditional trace data.
- 3 solutions so far: vPath!4, BorderPatrol®!, PreciseTracerl®!
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Zipkinl? — A distributed tracing framework

- Why Zipkin?
- Helping developers gain deeper knowledge about how certain requests
perform in a distributed system.
- Helping developers gather timing data for the disparate services at
Twitter.

Z|1PKIN



Zipkin — Architecture
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Finagle in Zipkin

- A core module of Zipkin.

- Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle
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Google’s Dapper

dapper-2010.pdf




Google’s Dapper!!]

- Collect traces from production requests
- Low overhead
- Minimum of extra work for developer
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Methodology

- System model and problem statement
- System architecture

- Temporal Join Algorithm

- Case study



System model and problem statement

- System model:
- Large clusters: disparate services, each service is running on one node.
- Each node (component) can serve many requests in a certain period.

- Treat each component as a grey-box (minimize the instrumentation of
application source code and middleware).

- Problem statement:
- Asynchronous communication between nodes (components).
- Support event-driven architecture (like Finagle at Twitter)

- On each component:
- More than one threads to serve a request.
- threads can be used many times (reused).



System architecture
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System architecture

- Collector:
- What information do we capture?

- Inter-process communication between components:

- Domain name, Timestamp, Sender_IP, Sender_Port, Receiver_IP, Receiver_Port,
Message Size

- Track the thread (Tid) performing the system call over the incoming,
outgoing TCP connections.

- Resource accounting for above thread (Tid) such as context switching
and blocking on network.
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Approach

- How do we trace a request?

- Design goals:

- Determine which events from the stream pertain to a specific request?

- Minimize the instrumentation for several types of RPC.

- Problems:

- The thread may post the same event for any number of different requests.

- More than one threads to serve a request.
- Solution: Using event-schema to describe event relationships for the

particular application service, middleware of interest. (do not require to

instrument the application or middleware).
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Algorithm

- Event-schema:
- Specify which attribute of event connect to other events.
- |dentify each execution interval: BIND _START, BIND_STOP, BIND _BASICI3I
- Example:

- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_START, 0);

- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_BASIC, 0);

- ATTRIBUTE(" WebserverID ", BIND_BASIC, 0);
- EVENT(" HttpRequest ", "End");

- ATTRIBUTE("Threadld", BIND_BASIC, 0);

- ATTRIBUTE(“WebserverID", BIND_BASIC, 0);
- EVENT(“HttpRequest", "Start");

- ATTRIBUTE("TId", BIND_STOP, 0);

Temporal join:
- Following of a request as queries against a temporal database: each table holds the events of a
given type.

During a valid-interval (BIND_START and BIND_STOP) , events are joined together based on
the join attribute between them (WebserverID) in above example of event schema.
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Case study

- Simple multi-tiers environment:

- web application (mediawiki), web servers (apache), Database
(MariaDB). And including Memcached.

Apache,
Memcached
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Case study

- Cloud platform: Openstack
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Future work

- Build a new add-on for LTTng to trace incoming message
and outgoing message at the kernel level.

- Track an incoming message within one component.

- Applying proposed approach to generate the execution
path of request in a simple web application (web server
farm included).

- Build a new plug-in for eclipse to see the request path.
- Implement the approach for the Openstack platform.

- Applying mathematical models (Kalman filter,...) to build a
new adaptive sampling mechanism based on the traffic
workloads.
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Challenges

Support Synchronous/Asynchronous communication between components
and within one component: a request can involve execution across threads
and process boundaries within one component.

Collect the events of Linux kernel network stack on one component.
Simplify the event-schema as compared to Magpie.

Improve and optimize the solutions for existing problems.
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