
Laboratoire DORSAL
Département de génie informatique

LTTng on the Intel Xeon Phi
 +
Debugging RPC with GDB

Simon Marchi

2

● Introduction / context of the work

● LTTng on the Intel Xeon Phi

● Debugging RPC with GDB

● Questions

Outline

3

● Ported LTTng to Tilera Tile-Gx, a many-core
processor

● Next step: LTTng on the Intel Xeon Phi, but...

● Let's find something related to many-cores and
GDB...

Introduction / context

4

● Introduction / context of the work

● LTTng on the Intel Xeon Phi

● Debugging RPC with GDB

● Questions

Outline

5

● Reminder...

● Coprocessor for offloading heavy tasks

● Linux system in itself

● Network connection with host via PCIe

● Modes of execution:
● Native

● Partial offloading

LTTng on the Intel Xeon Phi

Source: intel.com

6

● 57 physical cores, hyper threaded 4 way

● 6 GB of RAM

LTTng on the Intel Xeon Phi

7

● Possible problems
● UST tracepoint registration is long, sometimes hits timeout

● Buffer memory usage: subbuf size x subbuf num x cores

– Default kernel: 256 kB x 4 x 228 = 228 MB

● RAM filesystem: can't save big traces there

● Network trace streaming: slowdown due to PCIe bus contention?

● Tracepoints in offloaded code?

LTTng on the Intel Xeon Phi

8

● Example of offload

 int main() {
 int a = 5, b = 7, result;

 #pragma offload target(mic) in(a,b) out(result)
 {
 <tracepoint here?>
 result = a + b;
 }
 printf(“Result is %d\n”, result);

 return 0;
 }

LTTng on the Intel Xeon Phi

9

● Introduction / context of the work

● LTTng on the Intel Xeon Phi

● Debugging RPC with GDB

● Questions

Outline

10

● Problem: programs that use remote procedure calls
are cumbersome to debug

● Goal: help the user debug the logical flow of the
program, from the client to the server

● Each RPC library is different, so we need knowledge
about specific libraries

● SunRPC, XML-RPC, DBus and “home-made” RPC

Debugging RPC with GDB

11

● Common pattern:
● Client has a stub function that initiate the RPC

● Server has a corresponding callback

● The user doesn't care about what is in between

Debugging RPC with GDB

12

● New commands
● step-rpc

– Make a step, try to go “through” the RPC

– If no RPC call is made, it results in normal step

● finish-rpc

– Complete the current RPC call and stop

● backtrace-rpc

– Print a combined backtrace between the server and the client, hiding the
middleware as much as possible

Debugging RPC with GDB

13

● GDB provides a (almost) complete Python API
● Set breakpoints and finish breakpoints programmatically

● Breakpoint hit callback

● Inspect threads, inferiors (debugged processes)

● Inspect stack frames

● Parse and evaluate language expressions

● ...

● Missing
● Inferior control (stop a thread, start a thread)

● UI Thread switching

Debugging RPC with GDB

14

● Internals
1. Client-side “start” breakpoint (installed when step-rpc)

2. Server-side “start” breakpoint

3. Server-side “finish” breakpoint

4. Client-side “finish” breakpoint

Debugging RPC with GDB

Client executing Client waiting for response Client executing

Server waiting for request Server executing Server waiting for request

1

2 3

4

15

● Limitations
● Both processes need to run under the same GDB

● Requires debug info for the RPC library

● Can conflict with network timeouts

● Possible improvements
● Multiple levels of RPC

Debugging RPC with GDB

16

● Questions ?

Debugging RPC with GDB

	Slide 1
	Slide 2
	Slide 3
	Concepts généraux
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

