Performance Analysis Of Cluster-based Data Center

Kim Nguyen & Mohamed Cheriet École de technologie supérieure, Montréal, Québec

Université du Québec École de technologie supérieure

Laboratory for Multimedia Communication in Telepresence

Outline

- * Synchromedia Consortium
- * Green ICT & GreenStar Network
- * Green Telco Cloud project
- * Tracing in Cloud Environment
- * Team & Tasks

Synchromedia Overview

- * Founded in 1998 by 4 universities of Quebec
- Awarded a \$4 million CFI grant to build a Pan-Canadian Consortium.
- Research areas
 - * Network virtualization
 - * Telepresence
 - * Intelligent interfaces
 - * Biomedical image processing
 - Document processing
 - Machine Learning & classification
 - * Green ICT
 - Environmental assessment

Synchromedia Sample Projects

- * Green Sustainable Telco Cloud (2012)
 - * \$1.5 million funded by NSERC, Ericsson, Inocybe Technologies
- * The Indian Ocean World (2010-2017)
 - * \$2.5 million funded by SSHRC
- * GreenStar Network (2010-2012)

ΣQU

- * \$2.1 million funded by CANARIE
- Multimedia communication in telepresence (2005-2010)
 - * \$4 million funded by CFI
- * EU's FP7 Panlab II (2008-2011)
 - * \$500k funded by MDEIE's PSIIRI
- * EU's FP6 Panlab I (2006-2008)
 - * \$100k funded by MDEIE's PSIIRI

Green

edi@

ΣQUATION AMAGE GREEN AT INTATVI Green ICT & GreenStar Network Green ICT Green ICT

- Climate Change is not reversible
- There will be an urgent need to develop low carbon solutions.
- Increasingly such solutions will be a major component of all future innovation in every aspect of our lives.
- ICT are a major consumer of power (8% in the US) and CO2 production which is growing at 6% per year. As such ICT sector is one of the primary areas in which we can develop low carbon solutions

E Q U A T I O N AMAGE DE LE NATATIVE Green ICT & GreenStar Network Premises

Current research focuses on energy efficiency

- * Renewable energy sources are hard to connect to the grid
- Energy loss in transmitting power is higher than when data is moved over networks

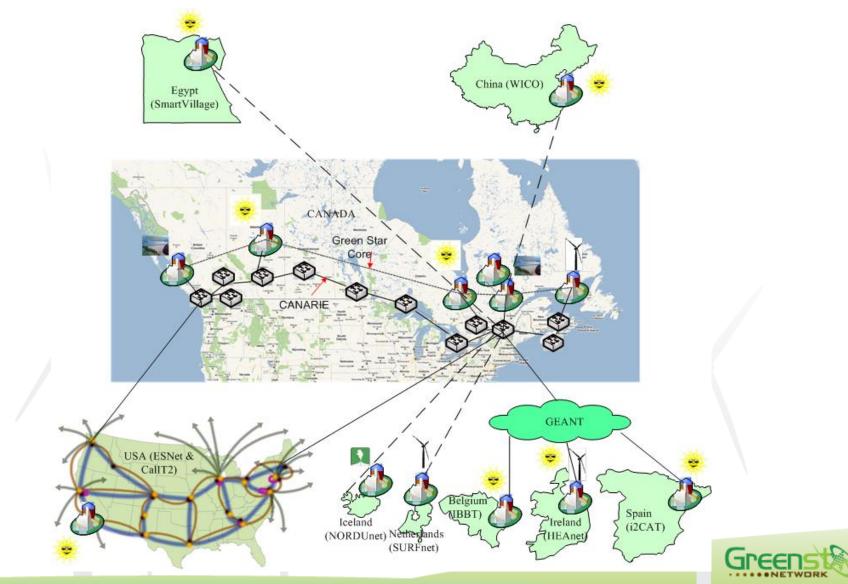
Khazzoom-Brookes postulate:

"Energy efficiency improvements, on the broadest considerations, are economically justified at the micro level, lead to higher levels of energy consumption at the macro level"

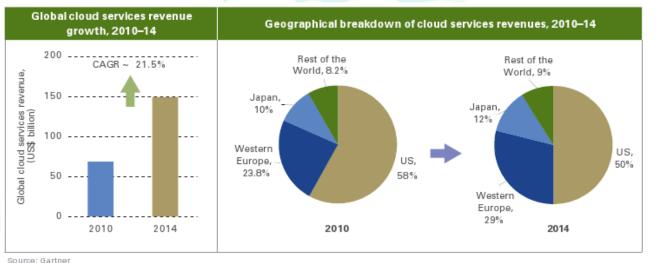
Bill St. Arnaud:

"Energy efficiency is an irrelevant network design approach and the objective should be to make networks carbon neutral"

EQUATION AMAGEN DEVEN AT TO NO Green ICT & GreenStar Network Goals of the GSN


GreenStar World's First Zero Carbon Internet & Cloud

- * To develop *low-carbon technologies*, including:
 - renewal energy like wind- and solar-powered networks,
 - virtualization,
 - carbon quantification procedures, and tools,


 To ensure ICT's carbon footprint remains under control and does not increase as the world becomes more and more reliant on information and communication technologies.

ΣQUATION AMAGE DE LO N Green ICT & GreenStar Network Network Plan

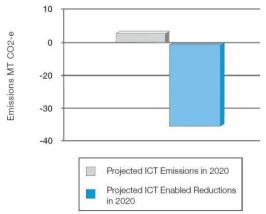
Green Telco Cloud The need of Telco cloud

ΣQ

Technology + Ecology =

Cloud market

Telco	SaaS	laaS	PaaS
AT&T	~	~	√ (Planned)
BT	\checkmark	\checkmark	×
Deutsche Telekom / T-Systems	\checkmark	~	\checkmark
France Telecom / Orange Business Services	~	×	✓ (Plan to launch by sec ond half of 2012)
NTT	\checkmark	\checkmark	×
Telefónica	\checkmark	\checkmark	×
Telstra	√	~	√ (Planned)
Verizon	~	\checkmark	×


Global operators

Green Telco Cloud But... there is environmental concerns

- Estimates of data center electricity demand are at 31GW globally, with an increase of 19% in 2012 alone (global electricity demand essentially flat for the past three years)
- It is estimated that global mobile data traffic grew 133% in 2011, with 597 petabytes of data sent by mobiles every month.
- Electronic devices account for 15% of home electricity use, and are predicted to triple by 2030. (SMART 2020, 2008)
- The combined electricity demand of the internet/cloud (data centres and telecommunications network) globally is 623bn kWh (and would rank 5th among countries). (Make IT Green, 2010)

ΣΟUATION Tracing & Monitoring in Telco Cloud Technology - Ecology - Ecolo

- Heterogenous environment
 - Server, Network, Storage, Application, Middleware
- Specific behaviours & actions
 - Virtualization, migration
 - High Performance Computing
- Various data models
 - CPU, memory, I/O of servers
 - Hypervisor, virtual machines, hardware accelerators
- Requirements for optimization
 - Resource usage
 - System throughput
 - Response time

ΣQUATION ANALON DEELEN ET TACING & Monitoring in Telco Cloud Technology - Ecology - Ec

- Type of jobs in cloud
 - Parallel (jobs in clusters & grids are basically bags-of-tasks, mostly sequential)
 - Application-specifics (e.g. Telco apps)
- Resource provisioning
 - On-demand (no preperation time)
 - Resources can flexibly be allocated/relocated/released
- Scale
 - Very large / Various layers (laaS, PaaS, SaaS)
 - Unknown geographical localtions
- Performance metrics
 - Various / No standard
 - High variability (Average vs. Peak)

ΣQUATION **Tracing & Monitoring in Telco Cloud Requirements for Tracing Tools**

- Virtualization
 - Support many types of hypervisors (VMWare, KVM, XEN)
 - Tracing servers and VMs performance in the same time
 - Easily integrated into cloud middleware
- Real-time tracing
 - Resource acquision and release are substantial
 - Tracing performance during migration (high variation)
- Distribution/Scalability
 - Capable of working in various distributed nodes
 - Working in parallel
- Robustness
 - More intelligent
 - Context-aware

ETS Team & Tasks The Team

Team

- Professor Mohamed Cheriet: data analysis, pattern recognition, artificial intelligence, cloud computing, green ICT
- Research Associate Kim Nguyen: high performance networking, cloud computing, data processing, optimization, green ICT
- PhD 1 (working in Green Telco project): cloud middleware, performance analysis
- MSc 1: Telco cloud monitoring and tracing, data visualization
- MSc 2: Remote client monitoring, data visualization
- Collaboration / Follow-up
 - Monthly meeting via Video Conference system
 - Monthly website update
 - Follow-up by Geniève Bastien & Kim Nguyen
 - Quarterly report

ETS Team & Tasks Tasks (to be revised)

- Tasks in CTPD
 - > T4M1.1 Telecom cluster monitoring state of the art
 - > T4M1.2 Algorithms for Telecom Cluster tracing and debugging
 - > T4M1.3 Optimization of Telecom cluster tracing and debugging
 - T4M1.4 Technology transfer and results dissemination
 - T4M2.1 Telecom cluster visualization and control survey
 - > T4M2.2 Algorithms for Telecom Cluster monitoring and control
 - > T4M2.3 Optimization of the Telecom cluster monitoring
 - > T4M2.4 Technology transfer and results dissemination
 - > T4M3.1 remote client monitoring state of the art
 - > T4M3.2 Algorithms for remote client servers tracing
 - > T4M3.3 Optimization of the remote client servers tracing
 - > T4M3.4 Technology transfer and results dissemination
 - T4M4.1 remote client servers visualization/control survey
 - > T4M4.2 Algorithms for remote client servers visualization
 - > T4M4.3 Optimization of the remote client servers tracing
 - T4M4.4 Technology transfer and results dissemination

Thank you!

