Extending the extended BPF
KeBPF — UeBPF

Suchakrapani Datt Sharma
May 13, 2015

Ecole Polytechnigue de Montréal

Laboratoire DORSAL

Agenda

Recap

* Research Updates

Investigations

e Background

* An experimental userspace eBPF library

« Performance of Userspace eBPF and LTTng filters
* Extensions to Kernel eBPF, example use-case

Upcoming and in-progress
« Explore KeBPF <> UeBPF interactions

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e —
Recap

Research Focus - Integrated and streamlined framework for
tracing & debugging, dynamic instrumentation & JIT techniques

A XX focus, more focus

* Explore more of eBPF + Tracing
* Rapid developments on kernel side mean more opportunities
e Extensions of eBPF in assisted-tracing

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e —
Recap

Where we left off

 Evaluating pure performance of eBPF+JIT in kernel
* Observing it's performance with LTTng kernel tracing
* Interpreted eBPF - 83ns/event, JITed eBPF - 25ns/event
with a simple filter

In the ' last time

« Userspace eBPF for better control and comparisons with LTTng
» Exploit opportunities to improve eBPF JIT internals

* Recent developments in LLVM backend for eBPF [1]
« Assisted tracing, explore actions in eBPF

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

Investigations

FILTER |
c / CONDITION |~
S !
T3 ‘
ST ! FALSE TRUE T
g L (2) (b) (© g
: tracepoint() bl . :
: : : Create Convert to > JIT Compile '
: : : Predicate Tree Bytecode to Native Code 5
SN Walk and Interpret Execute
TARGET BINARY ! Eyaluate Tree Bytecode '
: L» TRUE /FALSE 4—| §
Background

* Extended Berkeley Packet Filter (eBPF)
« Fast, small, in-kernel packet & syscall filtering [2]
* Register based, switch-dispatch interpreter
* Special BPF syscall, 64-bit regs, shared-map operations

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
Investigations

Why eBPF in Tracing

* Primarily for filters & script driven tracing

« Add sophisticated features to tracing, at low cost

("« Fast stateful kernel event filtering

* In trace-synchronizarion to reduce overhead by only
uij_’;";w< selecting specific packets matching criteria

e Record system wide sched_wakeup only when target
process is blocked to reduce overhead

\.* Utilize side-effects for assisted-tracing (exploit fall-through)
* A more uniform way of filtering events across userspace and

kernel

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
Investigations

Userspace eBPF (UeBPF)

e Experimental /ibebpf to provide filtering in userspace tracing

Includes side-effects through communication with modified
KeBPF
Easy switch between JIT/interpret for performance analysis

Includes LLVM backend [1] No more raw bytecodes!

Load bytecode from eBPF binaries

Performance Analysis
* Apply LTTng, eBPF, eBPF+JIT, hardcoded filters

o Measure t + ¢t

execution tracepoint

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

Investigations
Performance Analysis
t_ (TRUE)
t) t_ (FALSE)] t,
vard == “str@”‘) ¢ ‘varl == “strl”‘ Y D* ‘varN == “strN” » Tracepoint
PB P:l E PA PN E
' v
; TRUE
FALSE

Depth of Evaluation (DoE)

-
!

‘4
-

e Pure filter evaluation.
« TRUE/FALSE biased AND chain with varying predicates

« Measure t+t with varying DoE (Biased TRUE)

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

Investigations

Performance Analysis

Pure eBPF Filter Performance with

50 Predicates
o Hardcoded SEEIERISREE IR
| eBPF(JIT) —o— |
100 K| eBPF(Interpreted) —&— | ===~

Time (s)
Time (s)

0.1

1M 10M 100M

Events

110 I I i T

100
90

80 -

70
60
50
40
30
20
10

Pure eBPF Filter Performance with Increasing
Number of Predicates

B Hardcoded
eBPF(JIT) —e—
eBPF(Interpreted) —a—

5/ event

o né/ eN c\’\'\'

| t ! t !
5 10 15 20 25 30 35 40

Number of Predicates

e Steady gain in 3x range for JIT vs Interpreted with increasing events, slightly
increasing gain (3.1x to 3.3x) with increasing predicates

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
Investigations

Performance Analysis

eBPF vs LTTng Filter Performance with 100M events
and Increasing Predicates

90 I |
LTTng (Interpreted, TRUE) —ill—
80 |- LTTng (Interpreted,FALSE) — —@- =
LTTng (No Filter)
70 eBPF (JIT,TRUE) —wp—o
eBPF (Interpreted, TRUE) ——4——
eBPF (JIT,FALSE) — —Y& — A
60 |- eBPF (Interpreted,FALSE) - -[F - \
- /
w 50 -
£
£ 40 -
______ ¥
y B o S
30 - U .
- ..- -
20 e 7 i oS = H-=-==e—==== £
10 % __________ @-"C i i S i X
__________ = miom R
0 | | |
2 4 6 8 9

Number of Predicates

* eBPF JITed filter is 3.1x faster than LTTng's interpreted bytecode and eBPF's
interpreted filter is 1.8x faster than LTTng's interpreted version

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Extensions

» Syscall latency tracking use-case. Thank you Francois, Francis
and Julien
e Latency threshold is defined statically and manually [3]
* In real life, it may need to be set dynamically - different
machines can have different normal levels for syscalls
* \We may need to adaptively set thresholds per syscall based
on user's criteria as well as tracking the normal behaviour.
* \We can use eBPF side-effects to provide dynamic and
adaptive thresholds

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Extensions

* Side-effects?
« eBPF is not just JT/JF targets [6], we can do more complex
things like perform internal actions in addition to decisions
« We can implement more internal BPF helper functions such
as bpf _get threshold(), bpf_prof analysis() etc.
» Access shared data from KeBPF/UeBPF
* Maintain such states within eBPF and use side-effects to

compute complex decisions

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Syscall Latency Tracking

Latency Tracker
Module

KeBPF FILTER

UeBPF FILTER

//é-'f—* reg_ioctl()

v threshold <ﬂ\

+ _ {predicate}

i

|+ bpf_set_threshold() i

Register 42 - —
latency()

Atracepoint()

Kernel

Userspace

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Syscall Latency Tracking

|
|
|
|
d % Latency Tracker . PID 42
eshno!

BRGNP N R Hodule ..., R [N
now 4 . KeBPF FILTER . UeBPF FILTER
1 ' I !

\ﬁ: threshold < . |+ —— reg_1ioctl()
I 1

+ _ {predicate}

|+ bpf_set_threshold() ‘

Register 42 - —
latency()

Atracepoint()

Kernel Userspace

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Syscall Latency Tracking

. wﬂq
1S \S 60
Thi \

Latency Tracker
Module

KeBPF FILTER Shared Mem i

UeBPF FILTER

i v threshold

: proc_state
proc_state “T\\\ threshold

U B

i reg_pid()
R

" bpf_set_threshold()

//Jﬁi.iPﬁfq}E?Ffi...f L3 misses | | b
L2 misses
Instrs
get_prof_data() S
latency() ! —» get_prof_data()
|
Atracepoint() . /
|
|
|
Kernel : Userspace
on
or¥ 50
Gonna 5%

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
In-progress

KeBPF — UeBPF Syscall Latency Tracking

« Shared Memory

« Mix of RCU based hash table and atomic value array

e Perf-like implementation mmap+debugfs probably

e L2, L3 cache misses, instructions retired per CPU and other
profiling data can be reliably obtained from special
instructions using Perf/PAPI [4]

» More data (reads/writes to memory controller) on specific
Intel archs using other direct ring-1 mode privileged
instructions or MSR module [5]

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

What's Next

Inferences

 UeBPF is fast, a good port for performance comparison
* \We can use it further to develop userspace assisted kernel
tracing or kernel assisted userspace tracing
« Such as, recording kernel events at function-granularity

Going Further

* Decide upon scalable kernel-user data sharing approach

* New helper functions from within eBPF to handle this data
and explore more side-effects with states (eg. synchronization)

e Consider ABI-less mechanism of transferring data

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

e
References

[1] http://reviews llvm . org/rl 227008
[2] https://www kernel org/doc/Documentation/networking/filter. txt

[3] https://github com/fdoray/Ittng-profile

[4] Terpstra, D., Jagode, H., You, H., Dongarra, J. "Collecting Performance Data with PAPI-
C," Tools for High Performance Computing 2009, Springer Berlin / Heidelberg, 3rd Parallel
Tools Workshop, Dresden, Germany, pp. 157-173, 2009

[5] https://software intel com/en-us/articles/intel-performance-counter-monitor

[6] Schulist, J., Borkmann, D., Starovoitov, A.: Linux Socket Filtering aka Berkeley Packet

Filter (BPF). https://www kernel.org/doc/Documentation/networking/filter txt

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

http://reviews.llvm.org/rL227008
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/fdoray/lttng-profile
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.kernel.org/doc/Documentation/networking/filter.txt

Questions?

suchakrapani.sharma@polymtl.ca
suchakra on #lttng

POLYTECHNIQUE MONTREAL - Suchakrapani Datt Sharma

mailto:suchakrapani.sharma@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

