

Extending the extended BPF
KeBPF UeBPF

Suchakrapani Datt Sharma

May 13, 2015

 École Polytechnique de Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Agenda
Recap

● Research Updates

Investigations
● Background

● An experimental userspace eBPF library

● Performance of Userspace eBPF and LTTng filters

● Extensions to Kernel eBPF, example use-case

Upcoming and in-progress
● Explore KeBPF UeBPF interactions

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Recap

Research Focus : Integrated and streamlined framework for

tracing & debugging, dynamic instrumentation & JIT techniques

 More focus, more focus
● Explore more of eBPF + Tracing

● Rapid developments on kernel side mean more opportunities

● Extensions of eBPF in assisted-tracing

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Recap

Where we left off
● Evaluating pure performance of eBPF+JIT in kernel

● Observing it's performance with LTTng kernel tracing

● Interpreted eBPF – 83ns/event, JITed eBPF – 25ns/event

with a simple filter

In the last time
● Userspace eBPF for better control and comparisons with LTTng

● Exploit opportunities to improve eBPF JIT internals

● Recent developments in LLVM backend for eBPF [1]

● Assisted tracing, explore actions in eBPF

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Background
● Extended Berkeley Packet Filter (eBPF)

● Fast, small, in-kernel packet & syscall filtering [2]

● Register based, switch-dispatch interpreter

● Special BPF syscall, 64-bit regs, shared-map operations

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Why eBPF in Tracing
● Primarily for filters & script driven tracing

● Add sophisticated features to tracing, at low cost

● Fast stateful kernel event filtering

● In trace-synchronizarion to reduce overhead by only

selecting specific packets matching criteria

● Record system wide sched_wakeup only when target

process is blocked to reduce overhead

● Utilize side-effects for assisted-tracing (exploit fall-through)

● A more uniform way of filtering events across userspace and

kernel

Sample

use-cases

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Userspace eBPF (UeBPF)
● Experimental libebpf to provide filtering in userspace tracing

● Includes side-effects through communication with modified

KeBPF

● Easy switch between JIT/interpret for performance analysis

● Includes LLVM backend [1] No more raw bytecodes!

● Load bytecode from eBPF binaries

Performance Analysis
● Apply LTTng, eBPF, eBPF+JIT, hardcoded filters

● Measure t
execution

+ t
tracepoint

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Performance Analysis

● Pure filter evaluation.

● TRUE/FALSE biased AND chain with varying predicates

● Measure t
e
+ t

t
with varying DoE (Biased TRUE)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Performance Analysis

● Steady gain in 3x range for JIT vs Interpreted with increasing events, slightly

increasing gain (3.1x to 3.3x) with increasing predicates

1018 ns/eve
nt

305 ns/eve
nt

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Performance Analysis

● eBPF JITed filter is 3.1x faster than LTTng's interpreted bytecode and eBPF's

interpreted filter is 1.8x faster than LTTng's interpreted version

325 ns/eve
nt

325 ns/eve
nt

1 54 ns/eve
nt

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Extensions
● Syscall latency tracking use-case. Thank you François, Francis

and Julien

● Latency threshold is defined statically and manually [3]

● In real life, it may need to be set dynamically – different

machines can have different normal levels for syscalls

● We may need to adaptively set thresholds per syscall based

on user's criteria as well as tracking the normal behaviour.

● We can use eBPF side-effects to provide dynamic and

adaptive thresholds

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Extensions
● Side-effects?

● eBPF is not just JT/JF targets [6], we can do more complex

things like perform internal actions in addition to decisions

● We can implement more internal BPF helper functions such

as bpf_get_threshold(), bpf_prof_analysis() etc.

● Access shared data from KeBPF/UeBPF

● Maintain such states within eBPF and use side-effects to

compute complex decisions

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Syscall Latency Tracking

UeBPF FILTER

 reg_ioctl()

 bpf_set_threshold()

KeBPF FILTER

threshold

{predicate}

Kernel Userspace

PID 42Latency Tracker
Module

Register 42

latency()

tracepoint()

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Syscall Latency Tracking

UeBPF FILTER

 reg_ioctl()

 bpf_set_threshold()

KeBPF FILTER

threshold

{predicate}

Kernel Userspace

PID 42Latency Tracker
Module

Register 42

latency()

tracepoint()

Threshol
d is

now dynamic

This works too

This is

going on

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Syscall Latency Tracking

UeBPF FILTER

 reg_pid()

 bpf_set_threshold()

KeBPF FILTER

threshold
proc_state

{predicate}

Kernel Userspace

PID 42Latency Tracker
Module

get_prof_data()

latency()

tracepoint()

Shared Mem

proc_state
threshold

L3 misses
L2 misses
Instrs

This is go
ing

on as w
ell

get_prof_data()

Gonna st
art soo

n

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

In-progress

KeBPF UeBPF Syscall Latency Tracking
● Shared Memory

● Mix of RCU based hash table and atomic value array

● Perf-like implementation mmap+debugfs probably

● L2, L3 cache misses, instructions retired per CPU and other

profiling data can be reliably obtained from special

instructions using Perf/PAPI [4]

● More data (reads/writes to memory controller) on specific

Intel archs using other direct ring-1 mode privileged

instructions or MSR module [5]

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

What's Next

Inferences
● UeBPF is fast, a good port for performance comparison

● We can use it further to develop userspace assisted kernel

tracing or kernel assisted userspace tracing

● Such as, recording kernel events at function-granularity

Going Further
● Decide upon scalable kernel-user data sharing approach

● New helper functions from within eBPF to handle this data

and explore more side-effects with states (eg. synchronization)

● Consider ABI-less mechanism of transferring data

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

References

[1] http://reviews.llvm.org/rL227008

[2] https://www.kernel.org/doc/Documentation/networking/filter.txt

[3] https://github.com/fdoray/lttng-profile

[4] Terpstra, D., Jagode, H., You, H., Dongarra, J. "Collecting Performance Data with PAPI-

C," Tools for High Performance Computing 2009, Springer Berlin / Heidelberg, 3rd Parallel

Tools Workshop, Dresden, Germany, pp. 157-173, 2009

[5] https://software.intel.com/en-us/articles/intel-performance-counter-monitor

[6] Schulist, J., Borkmann, D., Starovoitov, A.: Linux Socket Filtering aka Berkeley Packet

Filter (BPF). https://www.kernel.org/doc/Documentation/networking/filter.txt

http://reviews.llvm.org/rL227008
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/fdoray/lttng-profile
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.kernel.org/doc/Documentation/networking/filter.txt

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Questions?

suchakrapani.sharma@polymtl.ca

suchakra on #lttng

mailto:suchakrapani.sharma@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

