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Agenda

Recap

* Research Updates

Investigations

e Background

* An experimental userspace eBPF library

« Performance of Userspace eBPF and LTTng filters
* Extensions to Kernel eBPF, example use-case

Upcoming and in-progress
« Explore KeBPF <> UeBPF interactions
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Recap

Research Focus - Integrated and streamlined framework for
tracing & debugging, dynamic instrumentation & JIT techniques

A XX focus, more focus

* Explore more of eBPF + Tracing
* Rapid developments on kernel side mean more opportunities
e Extensions of eBPF in assisted-tracing
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Where we left off

 Evaluating pure performance of eBPF+JIT in kernel
* Observing it's performance with LTTng kernel tracing
* Interpreted eBPF - 83ns/event, JITed eBPF - 25ns/event
with a simple filter

In the ' last time

« Userspace eBPF for better control and comparisons with LTTng
» Exploit opportunities to improve eBPF JIT internals

* Recent developments in LLVM backend for eBPF [1]
« Assisted tracing, explore actions in eBPF
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Investigations
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Background

* Extended Berkeley Packet Filter (eBPF)
« Fast, small, in-kernel packet & syscall filtering [2]
* Register based, switch-dispatch interpreter
* Special BPF syscall, 64-bit regs, shared-map operations
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Why eBPF in Tracing

* Primarily for filters & script driven tracing

« Add sophisticated features to tracing, at low cost

("« Fast stateful kernel event filtering

* In trace-synchronizarion to reduce overhead by only
uij_’;";w< selecting specific packets matching criteria

e Record system wide sched_wakeup only when target
process is blocked to reduce overhead

\.* Utilize side-effects for assisted-tracing (exploit fall-through)
* A more uniform way of filtering events across userspace and

kernel
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Userspace eBPF (UeBPF)

e Experimental /ibebpf to provide filtering in userspace tracing

Includes side-effects through communication with modified
KeBPF
Easy switch between JIT/interpret for performance analysis

Includes LLVM backend [1] No more raw bytecodes!

Load bytecode from eBPF binaries

Performance Analysis
* Apply LTTng, eBPF, eBPF+JIT, hardcoded filters

o Measure t + ¢t

execution tracepoint
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Investigations
Performance Analysis
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e Pure filter evaluation.
« TRUE/FALSE biased AND chain with varying predicates

« Measure t+t with varying DoE (Biased TRUE)
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Investigations

Performance Analysis

Pure eBPF Filter Performance with
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Number of Predicates

e Steady gain in 3x range for JIT vs Interpreted with increasing events, slightly
increasing gain (3.1x to 3.3x) with increasing predicates
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Performance Analysis

eBPF vs LTTng Filter Performance with 100M events
and Increasing Predicates
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* eBPF JITed filter is 3.1x faster than LTTng's interpreted bytecode and eBPF's
interpreted filter is 1.8x faster than LTTng's interpreted version
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KeBPF — UeBPF Extensions

» Syscall latency tracking use-case. Thank you Francois, Francis
and Julien
e Latency threshold is defined statically and manually [3]
* In real life, it may need to be set dynamically - different
machines can have different normal levels for syscalls
* \We may need to adaptively set thresholds per syscall based
on user's criteria as well as tracking the normal behaviour.
* \We can use eBPF side-effects to provide dynamic and
adaptive thresholds
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KeBPF — UeBPF Extensions

* Side-effects?
« eBPF is not just JT/JF targets [6], we can do more complex
things like perform internal actions in addition to decisions
« We can implement more internal BPF helper functions such
as bpf _get threshold(), bpf_prof analysis() etc.
» Access shared data from KeBPF/UeBPF
* Maintain such states within eBPF and use side-effects to

compute complex decisions
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KeBPF — UeBPF Syscall Latency Tracking
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KeBPF — UeBPF Syscall Latency Tracking
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KeBPF — UeBPF Syscall Latency Tracking
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KeBPF — UeBPF Syscall Latency Tracking

« Shared Memory

« Mix of RCU based hash table and atomic value array

e Perf-like implementation mmap+debugfs probably

e L2, L3 cache misses, instructions retired per CPU and other
profiling data can be reliably obtained from special
instructions using Perf/PAPI [4]

» More data (reads/writes to memory controller) on specific
Intel archs using other direct ring-1 mode privileged
instructions or MSR module [5]
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What's Next

Inferences

 UeBPF is fast, a good port for performance comparison
* \We can use it further to develop userspace assisted kernel
tracing or kernel assisted userspace tracing
« Such as, recording kernel events at function-granularity

Going Further

* Decide upon scalable kernel-user data sharing approach

* New helper functions from within eBPF to handle this data
and explore more side-effects with states (eg. synchronization)

e Consider ABI-less mechanism of transferring data
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Questions?

suchakrapani.sharma@polymtl.ca
suchakra on #lttng
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