

Towards Faster Trace Filters
using eBPF and JIT

Suchakrapani Datt Sharma

Dec 11, 2014

 École Polytechnique de Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Agenda

Recap
● Research Updates

Investigations
● What's the status of BPF?

● Benefits of eBPF & JIT in tracing

● eBPF with kernel tracing

● Early experiments & results

What's Next
● Modify experiments!

● Investigate bytecode generation techniques

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Recap

Research Focus : Integrated and streamlined framework for

tracing & debugging, dynamic instrumentation

Extensions
● Investigate the use of JIT compilation in tracing and

debugging context

● Explore how efficient bytecode generation and JITing can be

achieved

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

As of now,
● Tracing is fast, but its components are isolated

● Complex filters and scripts can be expensive

What can be done?
● Uniform framework for trace filters/scripts

● Extensible but with low overhead

● Improve underlying techniques.

● JIT when necessary/available [2]

● Optimized bytecode and JIT [2, 3, 5]

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Berkeley Packet Filter (BPF)
● Filter expressions → Bytecode → Interpret

● Fast, small, in-kernel packet & syscall filtering [6]

● Register based, switch-dispatch interpreter

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Berkeley Packet Filter (BPF)
● Filter expressions → Bytecode → Interpret

● Fast, small, in-kernel packet & syscall filtering [6]

● Register based, switch-dispatch interpreter

Current Status of BPF
● Extension for trace filtering (ftrace)

● BPF+JIT for filtering [1, 6]

● Evolved to extended BPF (eBPF) [1, 6]

● BPF maps, bpf syscall

● More registers (64 bit), back jumps, safety

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Why eBPF in Tracing
● Primarily, for filters & script driven tracing

● Expressions → Bytecode → JIT

 ↳ Interpret

● Add bulky features to tracing, at low cost

 Fast stateful kernel event filtering?

● Ktap's Dtrace-ish approach but not heavyweight

● A more uniform way of filtering events

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Initial Experiments (Kernel)
● Custom module with a custom probe for netif_receive_skb

and sched_switch events

● Apply simple eBPF, eBPF+JIT, hardcoded filter

● Measure t
filter

 + t
tracepoint

in probe handler

● Observe code generated by eBPF JIT vs hardcoded filter

// tick

IF ((device_name == “lo”) AND (protocol == IP) AND (length > 100))
{

TRACEPOINT();
}

// tock

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
Hardcoded :

if ((dev->name[0] == “l”) && (dev->name[1] == “o”))
{

trace_netif_receive_skb_filtered(skb);
}

 42: cmpb $0x6c,(%r12)
 47: je b8

:
:

 b8: cmpb $0x6f,0x1(%r12)
 be: jne 49 ; FLASE

Compare “l”Compare “l”

Compare “o”Compare “o”

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
eBPF Bytecode :

Sample modules with some more eBPF filters :

● https://gist.github.com/tuxology/68fbd813b6eb84fb9766

● https://gist.github.com/tuxology/1d00223dfa4b93c1031b

static struct bpf_insn insn_prog[] = {
 BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 0),
 BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_2, 0), /* ctx->arg1 */
 BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_1, 8), /* ctx->arg2 */
 BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_4, 3), /* compare arg1 & arg2 */
 BPF_LD_IMM64(BPF_REG_0, 0), /* FALSE */
 BPF_EXIT_INSN(),
 BPF_LD_IMM64(BPF_REG_0, 1), /* TRUE */
 BPF_EXIT_INSN(),

};

R2 = ctxR2 = ctx
R3 = *(dev->name)

R4 = 0x6f6c
R3 = *(dev->name)

R4 = 0x6f6c

https://gist.github.com/tuxology/68fbd813b6eb84fb9766
https://gist.github.com/tuxology/1d00223dfa4b93c1031b
https://gist.github.com/tuxology/68fbd813b6eb84fb9766
https://gist.github.com/tuxology/1d00223dfa4b93c1031b

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
eBPF JITed :

One-to-one JITing. More opportunity is in improving bytecode generation

 0: push %rbp
 1: mov %rsp,%rbp
 4: sub $0x228,%rsp
 b: mov %rbx,-0x228(%rbp)
 12: mov %r13,-0x220(%rbp)
 19: mov %r14,-0x218(%rbp)
 20: mov %r15,-0x210(%rbp)
 27: xor %eax,%eax
 29: xor %r13,%r13
 2c: mov 0x0(%rdi),%rsi
 30: mov 0x0(%rsi),%rdx
 34: mov 0x8(%rdi),%rcx
 38: cmp %rcx,%rdx

Clear A and XClear A and X

Compare R3, R4Compare R3, R4

 3b: je 0x0000000000000049
 3d: movabs $0x0,%rax ;FALSE
 47: jmp 0x0000000000000053
 49: movabs $0x1,%rax ;TRUE
 53: mov -0x228(%rbp),%rbx
 5a: mov -0x220(%rbp),%r13
 61: mov -0x218(%rbp),%r14
 68: mov -0x210(%rbp),%r15
 6f: leaveq
 70: retq

Make some space
on stack

Make some space
on stack

Save callee saved regsSave callee saved regs

Restore regsRestore regs

Jump to TRUEJump to TRUE

Load ctx args
to R3 and R4

Load ctx args
to R3 and R4

if ((memcmp(prev->comm, comm, 4) == 0) && (prev->state == 0)
{

trace_sched_switch_filter(skb);
}

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Some more filters
netif_receive_skb_filter

sched_switch_filter

if ((dev->name[0] == “l”) && (dev->name[1] == “o”) &&
 (skb->protocol == 8) && (skb->len > 100))
{

trace_netif_receive_skb_filter(skb);
}

Same as before

but a bit lon
ger

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Results

326
 ns

25
1 ns

Overhead of 75 ns 32 ns

(200K events)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Results

367
 ns

284 ns

Overhead of 83 ns 25 ns

(400K events)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

What's Next

Inferences
● Trace filtering with JIT is visibly better

● So, is it any good?

● Based on feedback, need to revise experiments

● Not a complete picture yet, remove irregularities

Going Further
● Complex filters, have a better test framework

● Explore specialization and generation of eBPF bytecode

● Put everything in userspace for tighter control

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

References

[1] https://kernel.googlesource.com/pub/scm/linux/kernel/git/ast/bpf/

[2] Run-Time Bytecode Specialization, Masuhara H., Yonezawa A., PADO '01 Proceedings

of the Second Symposium on Programs as Data Objects, ACM (2001)

[4] Optimizing Lua using run-time type specialization, Schröder M, B. Thesis (2012)

[5] Virtual-Machine Abstraction and Optimization Techniques, Brunthaler S. Electronic

Notes in Theoretical Computer Science 253 (2009)

[6] https://www.kernel.org/doc/Documentation/networking/filter.txt

https://kernel.googlesource.com/pub/scm/linux/kernel/git/ast/bpf/
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://kernel.googlesource.com/pub/scm/linux/kernel/git/ast/bpf/
https://www.kernel.org/doc/Documentation/networking/filter.txt

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Questions?

suchakrapani.sharma@polymtl.ca

suchakra on #lttng

mailto:suchakrapani.sharma@polymtl.ca
mailto:suchakrapani.sharma@polymtl.ca

Towards Faster Trace Filters
using eBPF and JIT

Suchakrapani Datt Sharma

Dec 11, 2014

 École Polytechnique de Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Agenda

Recap
● Research Updates

Investigations
● What's the status of BPF?

● Benefits of eBPF & JIT in tracing

● eBPF with kernel tracing

● Early experiments & results

What's Next
● Modify experiments!

● Investigate bytecode generation techniques

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Recap

Research Focus : Integrated and streamlined framework for

tracing & debugging, dynamic instrumentation

Extensions
● Investigate the use of JIT compilation in tracing and

debugging context

● Explore how efficient bytecode generation and JITing can be

achieved

● JIT has been there for quite long and has been
recently been used for trace filtering as well

● Need to make bytecode generation as well as
JITing efficient

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

As of now,
● Tracing is fast, but its components are isolated

● Complex filters and scripts can be expensive

What can be done?
● Uniform framework for trace filters/scripts

● Extensible but with low overhead

● Improve underlying techniques.

● JIT when necessary/available [2]

● Optimized bytecode and JIT [2, 3, 5]

● With latest techniques and work of pioneers, we have
achieved very high tracing speeds and minimum
overhead – well and good

● But adding more features, newer techniques will drag
down the desired performance of tracers

● My goal is to attack those underlying techniques and
algorithms so that tracers become future and feature
ready and have uniformity

● JIT really improvesJIT only when necessary – method
or trace

● Explore opportunities for optimizing – like specializing
bytecode or improve JITing techniques

● Like determine instruction type, using specialized
instructions. Similar to LuaJIT

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Berkeley Packet Filter (BPF)
● Filter expressions → Bytecode → Interpret

● Fast, small, in-kernel packet & syscall filtering [6]

● Register based, switch-dispatch interpreter

● BPF was simple, two, 32-bit registers
● Rudimentary operations and checking
● Initially designed for packet filtering and replaced

the predicate-tree walker

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Berkeley Packet Filter (BPF)
● Filter expressions → Bytecode → Interpret

● Fast, small, in-kernel packet & syscall filtering [6]

● Register based, switch-dispatch interpreter

Current Status of BPF
● Extension for trace filtering (ftrace)

● BPF+JIT for filtering [1, 6]

● Evolved to extended BPF (eBPF) [1, 6]

● BPF maps, bpf syscall

● More registers (64 bit), back jumps, safety

● Extended to 10 64-bit registers with extensions to
instructions, better mapping with newer
architectures for JITing, better spillage control

● Userspace compilation of bytecode with
LLVM/GCC backend, safety checks!

● Its has better acceptance chances to be in kernel –
maybe not for tracing use so soon!

● Take care to not blow it to a full VM and adapt it for
our use cases

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Why eBPF in Tracing
● Primarily, for filters & script driven tracing

● Expressions → Bytecode → JIT

 ↳ Interpret

● Add bulky features to tracing, at low cost

 Fast stateful kernel event filtering?

● Ktap's Dtrace-ish approach but not heavyweight

● A more uniform way of filtering events

● If we make the infrastructure cheap, we can afford
to do bulky things like maintain in-kernel states to
enhance filters

● Get me all the events that are causing some
daemon to be pre-empted very often

● Ktap has tried before to do this to make script
based tracing like dtrace with scripts generating
bytecode to be interpreted by ktapvm (in kernel)

● EBPF on other hand is an extension of an already
existing infra, re-factored, enhanced and can be
used anywhere.

● Libpcap still uses either bpf(kernel –
interpreted/jited) or bpf userspace as fallback

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Initial Experiments (Kernel)
● Custom module with a custom probe for netif_receive_skb

and sched_switch events

● Apply simple eBPF, eBPF+JIT, hardcoded filter

● Measure t
filter

 + t
tracepoint

in probe handler

● Observe code generated by eBPF JIT vs hardcoded filter

// tick

IF ((device_name == “lo”) AND (protocol == IP) AND (length > 100))
{

TRACEPOINT();
}

// tock

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
Hardcoded :

if ((dev->name[0] == “l”) && (dev->name[1] == “o”))
{

trace_netif_receive_skb_filtered(skb);
}

 42: cmpb $0x6c,(%r12)
 47: je b8

:
:

 b8: cmpb $0x6f,0x1(%r12)
 be: jne 49 ; FLASE

Compare “l”Compare “l”

Compare “o”Compare “o”

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
eBPF Bytecode :

Sample modules with some more eBPF filters :

● https://gist.github.com/tuxology/68fbd813b6eb84fb9766

● https://gist.github.com/tuxology/1d00223dfa4b93c1031b

static struct bpf_insn insn_prog[] = {
 BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, 0),
 BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_2, 0), /* ctx->arg1 */
 BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_1, 8), /* ctx->arg2 */
 BPF_JMP_REG(BPF_JEQ, BPF_REG_3, BPF_REG_4, 3), /* compare arg1 & arg2 */
 BPF_LD_IMM64(BPF_REG_0, 0), /* FALSE */
 BPF_EXIT_INSN(),
 BPF_LD_IMM64(BPF_REG_0, 1), /* TRUE */
 BPF_EXIT_INSN(),

};

R2 = ctxR2 = ctx
R3 = *(dev->name)

R4 = 0x6f6c
R3 = *(dev->name)

R4 = 0x6f6c

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Short Simple Filter
eBPF JITed :

One-to-one JITing. More opportunity is in improving bytecode generation

 0: push %rbp
 1: mov %rsp,%rbp
 4: sub $0x228,%rsp
 b: mov %rbx,-0x228(%rbp)
 12: mov %r13,-0x220(%rbp)
 19: mov %r14,-0x218(%rbp)
 20: mov %r15,-0x210(%rbp)
 27: xor %eax,%eax
 29: xor %r13,%r13
 2c: mov 0x0(%rdi),%rsi
 30: mov 0x0(%rsi),%rdx
 34: mov 0x8(%rdi),%rcx
 38: cmp %rcx,%rdx

Clear A and XClear A and X

Compare R3, R4Compare R3, R4

 3b: je 0x0000000000000049
 3d: movabs $0x0,%rax ;FALSE
 47: jmp 0x0000000000000053
 49: movabs $0x1,%rax ;TRUE
 53: mov -0x228(%rbp),%rbx
 5a: mov -0x220(%rbp),%r13
 61: mov -0x218(%rbp),%r14
 68: mov -0x210(%rbp),%r15
 6f: leaveq
 70: retq

Make some space
on stack

Make some space
on stack

Save callee saved regsSave callee saved regs

Restore regsRestore regs

Jump to TRUEJump to TRUE

Load ctx args
to R3 and R4

Load ctx args
to R3 and R4

if ((memcmp(prev->comm, comm, 4) == 0) && (prev->state == 0)
{

trace_sched_switch_filter(skb);
}

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Some more filters
netif_receive_skb_filter

sched_switch_filter

if ((dev->name[0] == “l”) && (dev->name[1] == “o”) &&
 (skb->protocol == 8) && (skb->len > 100))
{

trace_netif_receive_skb_filter(skb);
}

Same as before

but a bit longer

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Results

326
 ns

25
1 ns

Overhead of 75 ns 32 ns

(200K events)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Results

367
 ns

284
 ns

Overhead of 83 ns 25 ns

(400K events)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

What's Next

Inferences
● Trace filtering with JIT is visibly better

● So, is it any good?

● Based on feedback, need to revise experiments

● Not a complete picture yet, remove irregularities

Going Further
● Complex filters, have a better test framework

● Explore specialization and generation of eBPF bytecode

● Put everything in userspace for tighter control

● All PASS / All FAIL filters
● Time saved in typical trace record scenarios

because of filtering

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

References

[1] https://kernel.googlesource.com/pub/scm/linux/kernel/git/ast/bpf/

[2] Run-Time Bytecode Specialization, Masuhara H., Yonezawa A., PADO '01 Proceedings

of the Second Symposium on Programs as Data Objects, ACM (2001)

[4] Optimizing Lua using run-time type specialization, Schröder M, B. Thesis (2012)

[5] Virtual-Machine Abstraction and Optimization Techniques, Brunthaler S. Electronic

Notes in Theoretical Computer Science 253 (2009)

[6] https://www.kernel.org/doc/Documentation/networking/filter.txt

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Questions?

suchakrapani.sharma@polymtl.ca

suchakra on #lttng

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

