

Dynamic Tracing in Userspace
Dyninst, Kaji and the way ahead..

Suchakrapani Datt Sharma

Dec 11, 2013

 École Polytechnique de Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Agenda

Recap
● Questions raised

Investigations
● How Dyninst + UST performs

● A separate dynamic tracing lib – Kaji

● Analysis of Dyninst and Kaji

What Next
● Further investigations

● New features

2/14

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Recap

The goal was to investigate tools which can be of use to provide

dynamic tracing with UST without compromising performance

Questions raised :

● How well would Dyninst perform?

● What does it actually do?

● Is GDB’s infrastructure better than Dyninst?

● Are there new ways to leverage the current tools?

3/14

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Dyninst + UST

4/14

LTTng MUTATOR EXTERNAL_TP.so

image­>findFunction(tpint ,tp_in);
image­>findFunction(do_stuff ,..);
image­>findVariable(PAYLOAD);

proc = processCreate(bin);
proc­>loadLibrary(EXTERNAL_TP);
image = proc­>getImage();

ELF

BPatch_funcCallExpr snip(tp_in[0],var);
proc­>insertSnippet(snip);
proc­>continueExecution();

int var = 42;

void tpint(int a){
tracepoint(..,..,var);
}

do_stuff();

ELF

LTTng
MUTATOR

EXTERNALLY
COMPILED

TRACEPOINT
LTTng

UST

UNMUTATED
BINARY

MUTATED
BINARY

CTF
TRACE

Trace Payload

REGISTERS
WITH

Target binary is first started and
then mutated in process

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Dyninst + UST

5/14

0.1

1

10

100

1000

1 2 4 8 16 32 64

T
im

e
 (

s
)

Threads

Multi-core dynamic tracing with UST and SystemTap
with 1M events on a 64 core machine

Dynamic(UST)
Dynamic(SystemTap)

0.01

0.1

1

10

100

1000

64

T
im

e
 (

s
)

Threads

Multi-core dynamic tracing performance comparison
with 1M events/thread on a 64 core machine

Clean
Static(LTTng-UST)

Dynamic(LTTng-UST)
Dynamic(SystemTap)

Dyninst+UST provides similar overhead as compared to static tracing. Good

scalabilitywhen tuned with right options (disable recursive trampoline check and

disable FPR save)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Kaji

6/14

● A new lightweight library for dynamic tracing in development

● We used GDB's jump-pad based approach – very minimal

● At a very nascent stage – more like a proof of concept for now

Zifei's repo : https://github.com/5kg/kaji

My repo : https://github.com/tuxology/kaji

https://github.com/5kg/kaji
https://github.com/tuxology/kaji

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Dyninst and Kaji Analysis

7/14

Original

4009e8 <+0>: push %rbp

4009e9 <+1>: mov %rsp,%rbp

4009ec <+4>: movl $0x2a,-0x4(%rbp)

4009f3 <+11>: pop %rbp

4009f4 <+12>: retq

Dyninst's Modification

4009e8 <+0>: jmpq 0x10000

4009ed <+5>: rex.RB cld

4009ef <+7>: sub (%rax),%al

4009f1 <+9>: add %al,(%rax)

4009f3 <+11>: pop %rbp

4009f4 <+12>: retq

Kaji's Modification

400aa0 <+0>: push %rbp

400aa1 <+1>: mov %rsp,%rbp

400aa4 <+4>: jmpq 0x100000

400aa9 <+9>: add %al,(%rax)

400aab <+11>: pop %rbp

400aac <+12>: retq

Target function was dynamically

instrumented with a tracepoint call

and observed

Whole block replacedWhole block replaced

Jump at
instruction > 5byte

Jump at
instruction > 5byte

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Dyninst' s Jump

8/14

0x10000: push %rbp

0x10001: mov %rsp,%rbp

0x10004: movl $0x2a,-0x4(%rbp)

0x1000b: pop %rbp

0x1000c: lea -0xa8(%rsp),%rsp

0x10014: mov %rax,0x20(%rsp)

0x10019: lea 0xa8(%rsp),%rax

0x10021: and $0xffffffffffffffe0,%rsp

0x10025: mov %rax,(%rsp)

0x10029: mov -0x88(%rax),%rax

0x10030: push %rax

0x10031: push %rbx

0x10032: push %rcx

0x10033: push %rdx

0x10034: push %rsp

0x10035: push %r12

0x10037: push %r13

0x10039: push %r14

0x1003b: push %r15

0x1003d: lea -0x18(%rsp),%rsp

0x10042: movabs $0x601064,%rax

0x1004c: mov (%rax),%edi

0x1004e: movabs $0x0,%rax

0x10058: movabs $0x7f448928fa06,%rbx

0x10062: callq *%rbx

0x10064: lea 0x18(%rsp),%rsp

0x10069: pop %r15

0x1006b: pop %r14

0x1006d: pop %r13

0x1006f: pop %r12

0x10071: pop %rsp

0x10072: pop %rdx

0x10073: pop %rcx

0x10074: pop %rbx

0x10075: pop %rax

0x10076: mov (%rsp),%rsp

0x1007a: retq

Trampoline start
Grow stack

Trampoline start
Grow stack

Out of line executionOut of line execution

Push regsPush regs

Pop regsPop regs
Do some tricks Do some tricks

Grow stackGrow stack

var = 43var = 43

tpint() from
tracepoint lib
tpint() from
tracepoint lib

Shrink stackShrink stack

Restore
origninal rsp

Restore
origninal rsp

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Kaji' s Jump

9/14

0x100000: push %rax

0x100001: push %r8

0x100003: push %r9

0x100005: push %rcx

0x100006: push %rdx

0x100007: push %rsi

0x100008: push %rsp

0x100009: push %r12

0x10000b: push %r13

0x10000d: push %r14

0x10000f: push %r15

0x100011: movabs $0x7f65432cb472,%rax

0x10001b: callq *%rax

0x10001d: pop %r15

0x10001f: pop %r14

0x100021: pop %r13

0x100023: pop %r12

0x100025: pop %rsp

0x100026: pop %rsi

0x100027: pop %rdx

0x100028: pop %rcx

0x100029: pop %r9

0x10002b: pop %r8

0x10002d: pop %rax

0x10002e: movl $0x2a,-0x4(%rbp)

0x100035: jmpq 0x400aab <do_stuff+11>

kaji_int_probe()kaji_int_probe()

Push regsPush regs

Pop regsPop regs

Execute displaced
instructions

Execute displaced
instructions

Go back from
Jump-pad

Go back from
Jump-pad

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Kaji/Dyninst + UST (Overhead & Scalability)

10/14

As expected, the similarity in both approaches translates to similar performance.

But hold on...

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64
T
im

e
 (

s
)

Threads

Multi-core dynamic tracing with Dyninst and Kaji
(5M events on a 64 core machine)

Static
Dynamic(Dyninst)

Dynamic(Kaji)

0.1

1

10

100

500K 1M 5M 10M 50M

T
im

e
 (

lo
g

s
c

a
le

)

Events

Overhead analysis of Dyninst and Kaji based dynamic
tracing with increasing workload

Static
Dynamic(Dyninst)

Dynamic(Kaji)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Investigations

Kaji/Dyninst + UST (Startup)

11/14

Even for n=1, instrumentation cost for Kaji is way less (0.002s compared to 2.63s for

Dyninst) as we can have fine grained control of instrumentation time unlike Dyninst.

target_func_1()
target_func_2()

.

.
target_func_n()

tracepoint_1
tracepoint_2

.

.
tracepoint_n

Measure T
reg

 + T
instr

with n varying from 1 to 5000

(for Kaji, n is restricted to 1 as its not mature enough to handle
multiple tracepoints for now)

Test Binary Tracepoint Lib

n T
instr

 (s) T
reg

 (s)

1 2.63 0.03

10 2.65 0.03

100 2.99 0.04

1000 6.68 0.05

5000 35.03 0.11

n T
instr

 (s) T
reg

 (s)

1 0.002 0.012

Dyninst Kaji

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

What Next?

More analysis!

12/14

One does not simply... stop analyzing stuff!

● Real-life benchmarks

● PostgreSQL, MariaDB, Kenrel build – Mimic multiple static tracepoints –

but build and instrument them dynamically

● Isolate startup time for multiple scenarios with a real life benchmarks

Possible features
● On-the-fly dynamic tracepoints

● Generate dynamic tracepoints based on user inputs – scripts, switches

● Zifei's early implementation (expand the macro strategy) - http://ur1.ca/g5w27

● Fixed type dynamic tracepoints

● Common tracepoints based on types – regs, ints, floats, strings

● Easy access, no need to generate separate tracepoints

http://ur1.ca/g5w27

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

What Next?

Further investigation

13/14

● Use of bytecode interpreters and JIT in tracing infrastructure

● Can be useful for various features – LTTng already has bytecode

interpretation for implementing filters

● Ktap uses bytecode based dynamic tracing for kernel

● Can this lead to a purely userspace based bytecode tracing design?

● Seccomp-bpf – syscall filtering using BPF for sandboxing.

● Chrome is already using that.

● A step further – libseccomp has provision to output BPF code

● JIT for BPF improves the performance further. Should we aim for a similar

approach?

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Questions?

suchakrapani.sharma@polymtl.ca

suchakra on #lttng and #fedora-india

14/14

mailto:suchakrapani.sharma@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

