
EFFICIENT ANALYSIS OF APPLICATION
SERVERS IN THE CLOUD

Progress report meeting
December 2012

Phuong Tran Gia
gia-phuong.tran@polymtl.ca

Under the supervision of Prof. Michel R. Dagenais
Dorsal Laboratory, École Polytechnique de Montréal

Outline

• Completed tasks
• Future work
• Challenges
• Questions

Completed tasks
• Build background in:

� Distributed and large scale systems
� The design and implementation of the Linux kernel
� Userspace and Kernel Tracing

• LTTng documentations

• Project proposal of Cloud Computing project

• State of the art of study, including Zipkin(Twitter) and Dapper(Google)

Zipkin – A distributed tracing framework

• Why Zipkin?

Zipkin – A distributed tracing framework

• Why Zipkin?
• Helping developers gain deeper knowledge about how certain requests

perform in a distributed system

Zipkin – A distributed tracing framework

• Why Zipkin?
• Helping developers gain deeper knowledge about how certain requests

perform in a distributed system
• Helping developers gather timing data for the disparate services at

Twitter

Zipkin – Architecture

Zipkin – Architecture

Zipkin Server

Zipkin-web

Query daemon

Cassandra DB

Admin

Zipkin Collector
(Zipkin-collector core,

Scribe-server side,
Finagle server side,

Zipkin collector
daemon)

Cluster #01
Thrift

Finagle (client side),
Ruby Thrift

…

Scribe daemon
(client side)

Cluster #02

Thrift

Finagle

MySQL

Memcache

Scribe daemon
(client side)

Zookeeper

Scribe/
Zookeeper

Finagle in Zipkin
• A core module of Zipkin.
• Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle

Finagle in Zipkin [1]

• How Finagle-http works

Zipkin terminology

• Annotation: string data associated with a particular timestamp, service and host

• time: 2012-11-25 22:17:05

• value: “something happened”

• server: “192.0.0.108”

• service: “timelineservice”

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send

•

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send

•

• T: 10ms Server Receive

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send

•

• T: 10ms Server Receive T:90ms Server Send

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send T: 100ms Client Receive

•

• T: 10ms Server Receive T:90ms Server Send

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send T: 100ms Client Receive

• T: 20ms Read 30 Kbytes from file

• T: 10ms Server Receive T:90ms Server Send

Time

Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

•

• T: 0ms Client Send T: 100ms Client Receive

• T: 20ms Read 30 Kbytes from file

• T: 10ms Server Receive T:90ms Server Send

• Trace: A set of spans all associated with the same request.

Time

Zipkin UI

Zipkin UI

Zipkin UI

Zipkin UI

Zipkin UI

Zipkin UI - Dependencies

Google’s Dapper

Google’s Dapper [2]

• Collect traces from production requests
• Low overhead
• Minimum of extra work for developer

Future work
• Build an analysis module for application servers by

intercepting Asynchronous RPC.
• Start tracing MySQL/PostgreSQL, Redis/Cassandra services and

tomcat/apache2 application servers

• Could be integrated with Streaming Data module (like Scribe) for
cluster management.

• Large scale system performance profiling

Challenges
• Supporting many protocols
• Distributed tracing
• Performance improvements

• Tracing overhead management (adaptive sampling, production
workloads)

• Flexible and easy to use.

• Integration with LTTng

Questions
• Typical application servers in Cloud environment of

interest for industrial partners?

References

• [1] Johan Oskarsson , Zipkin- Runtime Open House, July 27, 2012
• [2] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul

Jaspan, Chandan Shanbhag, “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure”, Google Technical
Report dapper-2010-1, April 2010

