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Completed tasks

Build background in:
Distributed and large scale systems
The design and implementation of the Linux kernel
Userspace and Kernel Tracing

LTTng documentations
Project proposal of Cloud Computing project
State of the art of study, including Zipkin(Twitter) and Dapper(Google)
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Zipkin — A distributed tracing framework

- Why Zipkin?
- Helping developers gain deeper knowledge about how certain requests
perform in a distributed system

- Helping developers gather timing data for the disparate services at
Twitter

ZIPKIN



Zipkin — Architecture
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Cluster #02
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Zipkin — Architecture
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Finagle in Zipkin

- A core module of Zipkin.

- Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle



-
Finagle in Zipkin

- How Finagle-http works

Finagle Http service

Finagle Thrift Service
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ZIpkin terminology

Annotation: string data associated with a particular timestamp, service and host

Time
! >
. time: 2012-11-25 22:17:05
. value: “something happened”
. server: “192.0.0.108”

. service: “timelineservice”
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and an id
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I
ZIpkin terminology

Span: represents one specific method call; made up of a set of annotations. Has a name

and an id
Time
—>
J T: Oms Client Send T: 100ms Client Receive
T: 20ms Read 30 Kbytes from file
. T: 10ms Server Receive T:90ms Server Send

Trace: A set of spans all associated with the same request.



Zipkin Ul

Q, Find a trace

Overview  Timeline  Dependencies

Search term (service) Q . 112.819 ms
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Zipkin Ul

Owverview Timeline Dependencies Search term (service) Q, @ i 1-585 ms

Oms 0.2ms 0.4ms 0.6ms 0.Bms 1ms 1.2ms 1.4ms

Q, Find a tr

RVICENAMEEXAMPLE_O 1.585 methodcalfaitylongname_0
CEMAMEEXAMPLE_1
ICENAMEEXAMPLE_2
VICENAMEEXAMPLE_3
ICENAMEEXAMPLE_4
VICENAMEEXAMPLE_S
ICENAMEEXAMPLE_&

-ENAMEEXAMPLE_7
-ENAMEEXAMPLE_
CENAMEEXAMPLE_!

No Duplicates )

Service cpPu ¥ Wait

servicenameexample_0 0.992 0.593
servicenameexample_1 0.351 0.242
servicenameexample_§ 0.054 0.000
servicenameexample_11 0.048 0.012
servicenameexample_4 0.037 0.031
servicenameexample_2 0.032 0.028
servicenameexample_5 0.031 0.000
servicenameexample_3 0.028 0.000
servicenameexample_12 0.006 0.000
servicenameexample_13 0.003 0.000
servicenameexample_14 0.003 0.000
servicenameexample_9 0.000 0.000
servicenameexample_§ 0.000 0.000
servicenameexample_7T 0.000 0.000

servicenameexample_10 0.000 0.000
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Overview Timeline Dependencies Search term (service) Q @ . 1585 ms

Oms 0.2ms 0.4ms 0.6ms 0.Bms 1ms 1.2ms 1.4ms

ENAMEI MPLE | 1.585 methodcalfaitylongname_0
NAMEEXAMPLE_1
EMAMEI
CENAMEEX,
EMNAM

CENAMEEX,

CEMNAM

CENAMEEX,

No Duplicates :) = Service summary
Service ﬁ"' + wait

092 om%s
oo% oo
oo oo
005 oo
005 oo
000 000
000 oo

om0 oom
servicenameexample_10 0.000 0.000



Zipkin Ul

Service

servicenameexample 11

servicenameexample_3

servicenameexample_12

servicenameexample_13

servicenameexample_14

servicenameexample_9

servicenameexample_8

servicenameexample T

servicenameexample_10

CPU ¥
0.992
0.351
0.054
0.048
0.037
0.032
0.031
0.028
0.006
0.003
0.003
0.000
0.000
0.000
0.000

th

0.593
0.242
0.000
0.012
0.031
0.028
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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ZIpKin Ul - Dependencies
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Google’s Dapper



- 0000000000
Google’s Dapper 4

- Collect traces from production requests
- Low overhead
- Minimum of extra work for developer



Future work

- Build an analysis module for application servers by
iIntercepting Asynchronous RPC.

- Start tracing MySQL/PostgreSQL, Redis/Cassandra services and
tomcat/apache2 application servers

- Could be integrated with Streaming Data module (like Scribe) for
cluster management.

- Large scale system performance profiling



Challenges

- Supporting many protocols
- Distributed tracing

- Performance improvements

- Tracing overhead management (adaptive sampling, production
workloads)

- Flexible and easy to use.
- Integration with LTTng



Questions

- Typical application servers in Cloud environment of
Interest for industrial partners?
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