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Completed tasks
• Build background in:

� Distributed and large scale systems
� The design and implementation of the Linux kernel
� Userspace and Kernel Tracing

• LTTng documentations

• Project proposal of Cloud Computing project

• State of the art of study, including Zipkin(Twitter) and Dapper(Google)
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Zipkin – A distributed tracing framework

• Why Zipkin?
• Helping developers gain deeper knowledge about how certain requests 

perform in a distributed system
• Helping developers gather timing data for the disparate services at 

Twitter
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Zipkin – Architecture
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Finagle in Zipkin
• A core module of Zipkin.
• Finagle is an asynchronous network stack for the JVM that we can use to build 

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle



Finagle in Zipkin [1]

• How Finagle-http works



Zipkin terminology

• Annotation: string data associated with a particular timestamp, service and host

• time: 2012-11-25  22:17:05

• value: “something happened”

• server: “192.0.0.108”

• service: “timelineservice”

Time
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Zipkin terminology

• Span: represents one specific method call; made up of a set of annotations. Has a name 
and an id

•

• T: 0ms Client Send                                                                    T: 100ms Client Receive       

• T: 20ms Read 30 Kbytes from file

• T: 10ms Server Receive                                               T:90ms Server Send                              

• Trace: A set of spans all associated with the same request.

Time
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Zipkin UI - Dependencies



Google’s Dapper 



Google’s Dapper [2] 

• Collect traces from production requests
• Low overhead
• Minimum of extra work for developer 



Future work
• Build an analysis module for application servers by 

intercepting Asynchronous RPC.
• Start tracing MySQL/PostgreSQL, Redis/Cassandra services and 

tomcat/apache2 application servers

• Could be integrated with Streaming Data module (like Scribe) for 
cluster management.

• Large scale system performance profiling



Challenges
• Supporting many protocols
• Distributed tracing
• Performance improvements

• Tracing overhead management (adaptive sampling, production 
workloads)

• Flexible and easy to use.

• Integration with LTTng



Questions
• Typical application servers in Cloud environment of 

interest for industrial partners?
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