EFFICIENT ANALYSIS OF APPLICATION
SERVERS IN THE CLOUD

Q.- ECOLE
POLYTECHNIQUE
MONTREAL

Progress report meeting
December 2012

Phuong Tran Gia
gia-phuong.tran@polymtl.ca

Under the supervision of Prof. Michel R. Dagenais
Dorsal Laboratory, Ecole Polytechnique de Montréal

-
Outline

- Completed tasks
- Future work

- Challenges

- Questions

e
Completed tasks

Build background in:
Distributed and large scale systems
The design and implementation of the Linux kernel
Userspace and Kernel Tracing

LTTng documentations
Project proposal of Cloud Computing project
State of the art of study, including Zipkin(Twitter) and Dapper(Google)

Zipkin — A distributed tracing framework

- Why Zipkin?

—¥—

ZIPKIN

Zipkin — A distributed tracing framework

- Why Zipkin?
- Helping developers gain deeper knowledge about how certain requests
perform in a distributed system

ZIPKIN

Zipkin — A distributed tracing framework

- Why Zipkin?
- Helping developers gain deeper knowledge about how certain requests
perform in a distributed system

- Helping developers gather timing data for the disparate services at
Twitter

ZIPKIN

Zipkin — Architecture

Traced
T I B i e i EEIB
Zipkin
Collector >‘ Cassandra > Query > Web
O TN s 505056 A SR R A O SR H e

S

ZooKeeper

Cluster #02

Thrift

Finagle

MySQL

Memcache

Scribe daemon
(client side)

Cluster #01

Thrift

Finagle (client side),
Ruby Thrift

Scribe daemon
(client side)

Scribe/
Zookeeper

Zipkin — Architecture

Zipkin-web

Query daemon

Cassandra DB

—

Zookeeper

Zipkin Collector
(Zipkin-collector core,
Scribe-server side,
Finagle server side,
Zipkin collector
daemon)

Admin

Finagle in Zipkin

- A core module of Zipkin.

- Finagle is an asynchronous network stack for the JVM that we can use to build

asynchronous Remote Procedure Call (RPC) clients and servers in Java, Scala, or any JVM-
hosted language.

github.com/twitter/finagle

-
Finagle in Zipkin

- How Finagle-http works

Finagle Http service

Finagle Thrift Service

-
ZIpkin terminology

Annotation: string data associated with a particular timestamp, service and host

Time
! >
. time: 2012-11-25 22:17:05
. value: “something happened”
. server: “192.0.0.108”

. service: “timelineservice”

-
ZIpkin terminology

- Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

Time

_ >
T: Oms Client Send

—

-
ZIpkin terminology

- Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

Time

J T: Oms Client Send

T: 10ms Server Receive

-
ZIpkin terminology

- Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

Time

J T: Oms Client Send

T: 10ms Server Receive T:90ms Server Send

I
ZIpkin terminology

Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

Time
>

J T: Oms Client Send T: 100ms Client Receive

. T: 10ms Server Receive T:90ms Server Send

-
ZIpkin terminology

Span: represents one specific method call; made up of a set of annotations. Has a name
and an id

Time
>

J T: Oms Client Send T: 100ms Client Receive

T: 20ms Read 30 Kbytes from file
. T: 10ms Server Receive T:90ms Server Send

I
ZIpkin terminology

Span: represents one specific method call; made up of a set of annotations. Has a name

and an id
Time
—>
J T: Oms Client Send T: 100ms Client Receive
T: 20ms Read 30 Kbytes from file
. T: 10ms Server Receive T:90ms Server Send

Trace: A set of spans all associated with the same request.

Zipkin Ul

Q, Find a trace

Overview Timeline Dependencies

Search term (service) Q . 112.819 ms

Oms 10ms 20ms a0oms 40ms 50ms BOmE Toms B0ms 80ms 100ms 110ms
WEB CLUSTER O12.818 GET 3
QUICKIE SERVICE 1,571 gimme _stuff
WEB SERVER 109.358 GET
SOME SERVICE -
MEMCACHED Berocet
¥ MEMCACHED Paors
BIG ASS SERVICE orassgehemDster
& SERVICE | EEE
ASSTEdTees
& THINGIE 25 gemonr
DTHER DATA SERVICE -

E MEMCACHED Posce
= MEMCACHED B -
FINAL DATA SERVICE oz et
E MEMCACHED 306 cet
& MEMCACHED | ERRE

& MEMCACHED

|.332 Gat

Zipkin Ul

Owverview Timeline Dependencies Search term (service) Q, @ i 1-585 ms

Oms 0.2ms 0.4ms 0.6ms 0.Bms 1ms 1.2ms 1.4ms

Q, Find a tr

RVICENAMEEXAMPLE_O 1.585 methodcalfaitylongname_0
CEMAMEEXAMPLE_1
ICENAMEEXAMPLE_2
VICENAMEEXAMPLE_3
ICENAMEEXAMPLE_4
VICENAMEEXAMPLE_S
ICENAMEEXAMPLE_&

-ENAMEEXAMPLE_7
-ENAMEEXAMPLE_
CENAMEEXAMPLE_!

No Duplicates)

Service cpPu ¥ Wait

servicenameexample_0 0.992 0.593
servicenameexample_1 0.351 0.242
servicenameexample_§ 0.054 0.000
servicenameexample_11 0.048 0.012
servicenameexample_4 0.037 0.031
servicenameexample_2 0.032 0.028
servicenameexample_5 0.031 0.000
servicenameexample_3 0.028 0.000
servicenameexample_12 0.006 0.000
servicenameexample_13 0.003 0.000
servicenameexample_14 0.003 0.000
servicenameexample_9 0.000 0.000
servicenameexample_§ 0.000 0.000
servicenameexample_7T 0.000 0.000

servicenameexample_10 0.000 0.000

Zipkin Ul

Overview Timeline Dependencies Search term (service) Q @ . 1585 ms

Oms 0.2ms 0.4ms 0.6ms 0.Bms 1ms 1.2ms 1.4ms

ENAMEI MPLE | 1.585 methodcalfaitylongname_0
NAMEEXAMPLE_1
EMAMEI
CENAMEEX,
EMNAM

CENAMEEX,

CEMNAM

CENAMEEX,

No Duplicates :) = Service summary
Service ﬁ"' + wait

092 om%s
oo% oo
oo oo
005 oo
005 oo
000 000
000 oo

om0 oom
servicenameexample_10 0.000 0.000

Zipkin Ul

Service

servicenameexample 11

servicenameexample_3

servicenameexample_12

servicenameexample_13

servicenameexample_14

servicenameexample_9

servicenameexample_8

servicenameexample T

servicenameexample_10

CPU ¥
0.992
0.351
0.054
0.048
0.037
0.032
0.031
0.028
0.006
0.003
0.003
0.000
0.000
0.000
0.000

th

0.593
0.242
0.000
0.012
0.031
0.028
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

-
Zipkin Ul

ZIpKin Ul - Dependencies

I
Google’s Dapper

- 0000000000
Google’s Dapper 4

- Collect traces from production requests
- Low overhead
- Minimum of extra work for developer

Future work

- Build an analysis module for application servers by
iIntercepting Asynchronous RPC.

- Start tracing MySQL/PostgreSQL, Redis/Cassandra services and
tomcat/apache2 application servers

- Could be integrated with Streaming Data module (like Scribe) for
cluster management.

- Large scale system performance profiling

Challenges

- Supporting many protocols
- Distributed tracing

- Performance improvements

- Tracing overhead management (adaptive sampling, production
workloads)

- Flexible and easy to use.
- Integration with LTTng

Questions

- Typical application servers in Cloud environment of
Interest for industrial partners?

References

- [1] Johan Oskarsson , Zipkin- Runtime Open House, July 27, 2012

- [2] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul
Jaspan, Chandan Shanbhag, “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure”, Google Technical
Report dapper-2010-1, April 2010

