
39

Hardware-Assisted Software Event Tracing

ADRIEN VERGÉ and MICHEL DAGENAIS, École Polytechnique de Montréal

Event tracing is a reliable and low-intrusiveness method to debug and optimize systems and processes.
Low overhead is particularly important in embedded systems where resources and energy consumption is
critical. The most advanced tracing infrastructures achieve a very low footprint on the traced software,
bringing each tracepoint overhead to less than a microsecond. To reduce this still non-negligible impact, the
use of dedicated hardware resources is promising. In this paper, we propose complementary methods for
tracing, that rely on hardware modules to assist software tracing. We designed solutions to take advantage
of CoreSight STM, CoreSight ETM and Intel BTS, which are present on most newer ARM-based systems-
on-chip and Intel x86 processors. Our results show that the time overhead for tracing can be reduced by up
to 10 times when assisted by hardware, as compared to software tracing with LTTng, a high-performance
tracer for Linux. We also propose a modification to the Perf tool to speed BTS execution tracing up to 65%.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems—
Measurement techniques

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: ARM CoreSight, debugging, dedicated hardware, event tracing, Intel

BTS, LTTng

ACM Reference Format:

Adrien Vergé, Michel Dagenais. 2014. Hardware-assisted software event tracing. ACM Trans. Embedd. Com-

put. Syst. 13, 4, Article 39 (March 2014), 15 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Tracing is a monitoring method to record the runtime behavior of a program, for debug-
ging, optimization or performance measurement purposes. Traces are generated dur-
ing execution. They contain series of timestamped events, which may be used to under-
stand and model a process execution. Traces can be analyzed live or later, locally or on a
remote host. Unlike classical debugging, tracing is focused on low-intrusiveness, allow-
ing to study a process with a minimal alteration of its execution. Although lightweight,
software tracing solutions have non-zero side-effects because of extra executed code,
cache perturbation and other alterations to the execution path [Desnoyers 2009].

To facilitate program development, hardware manufacturers such as Intel and ARM
embed dedicated debugging circuits in their newer processors. For instance, Intel BTS
and ARM CoreSight ETM provide program tracing (recording the sequence of executed
instructions), whereas ARM CoreSight STM is designed to timestamp instructions
that write to a specific area. Although having different purposes, hardware debugging
circuits provide dedicated resources (comparators, buffers) that can be used to trigger

This work is supported by NSERC, Ericsson and EfficiOS.

Author’s addresses: A. Vergé and Michel Dagenais, Computer Science Department, École Polytechnique de

Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:2 A. Vergé and M. Dagenais

events and store data with almost zero overhead. By reconfiguring these resources, we
want to take advantage of hardware circuits to make tracing more lightweight.

The objective is to measure the benefits of using specialized hardware components
in the Linux Trace Toolkit next-generation (LTTng) [Desnoyers and Dagenais 2006],
a reference infrastructure for kernel and user-space tracing for Linux. We designed
solutions to retrieve trace information, similar to LTTng software traces, from hard-
ware blocks on ARM (with CoreSight ETM, STM, ETB [ARM 2006]) and Intel (with
BTS [Intel 2013a]). We developed tracing tools that configure these hardware circuits
and retrieve data of interest to produce traces. We measured the time overhead of such
devices versus non-traced executions, in order to compare to LTTng-UST pure-software
tracing.

We describe related work in section 2. We detail the test environment and the hard-
ware debugging components that we tested in section 3. The methodology and results
are presented in section 4 for using hardware-assisted software tracing, and in sec-
tion 5 for using execution path tracing hardware. We conclude and discuss future work
in section 6.

2. RELATED WORK

This section presents related work in the two main related areas: software tracing
tools and tracing systems using hardware components.

2.1. Software tracing

A wide range of solutions have been developed to trace programs with pure-software.
They either use interrupt-based methods or instrumentation (code modification). We
present here the main software tracers for Linux.

2.1.1. Ptrace. The ptrace [Padala 2002] system call is an old Unix functionality en-
abling a process to control another one, including reading its state and intercepting
its system calls. It is used in debuggers and programs with moderate requirements on
performance, such as gdb and strace. By giving access to a process internals, ptrace
provides powerful control, albeit at a significant performance cost. This is in large
part because each communication between the tracer and the traced process needs at
least two context switches. Because of ptrace’s intrusiveness, newer tools have been
designed with lower impact on the traced process execution.

2.1.2. Ftrace. Ftrace [Bird 2009] is a tool to monitor the system’s behavior by in-
strumenting the kernel. It is meant to debug and profile kernel-level problems
by tracing events such as system calls, interrupt handlers or scheduling func-
tions. As Ftrace was developed to trace the kernel’s internals, it does not sup-
port user-space program tracing. Moreover, it synchronizes on multi-core systems by
spinlocking with interrupts disabled, which has a non-negligible impact on perfor-
mance [Desnoyers and Dagenais 2009].

2.1.3. SystemTap. SystemTap [Eigler and Hat 2006] is an infrastructure that pro-
vides functional and performance debugging for Linux. It uses dynamic probes
(Kprobes [Goswami 2005]) to hook on specific points of execution in the kernel, and
more recently Uprobes [Keniston and Dronamraju 2009] to instrument functions in
user-space. Custom instrumentation can be defined via a scripting language, that once
compiled into a kernel module, outputs trace information in text format. SystemTap
is limited by its output format, which is not efficient for tracing programs with highly
frequent events or very large traces.

2.1.4. LTTng. LTTng [Desnoyers and Dagenais 2006] is a tracing infrastructure fo-
cused on performance and output format flexibility. It achieves efficiency by using

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:3

scalable and lockless methods such as read-copy-update (RCU) [McKenney et al. 2001]
and allocating per-CPU data structures. Hence, tracepoints are fast and the impact
on cache is minimized. LTTng’s output trace complies with the Common Trace For-
mat [EfficiOS 2013], a flexible and lightweight format supporting arbitrary event types
and compression. LTTng supports high-performance kernel-space and user-space trac-
ing (both sharing the same clock source), and all traces can be displayed in a graphical
analyzer such as TMF [LTTng team 2009], for better interpretation. For these reasons,
we chose LTTng-UST (user-space tracing version of LTTng) as a reference to conduct
our experiments. The results described in the rest of this paper refer to LTTng version
2.3.

2.2. Hardware-assisted tracing

Some tools take advantage of dedicated hardware capabilities in order to debug and
measure program performance. We present here software solutions that use hardware
components related to tracing.

2.2.1. Perf. Perf [Edge 2009] is a program profiler for Linux. It was not initially meant
for tracing, yet it can trace the sequence of instructions executed by a process on new
Intel platforms. To achieve this, Perf uses Intel’s BTS hardware registers, which are
detailed in section 3. BTS control is done in the kernel through the Perf application
binary interface, hence custom tracing programs can re-use this ABI to take advantage
of these hardware capabilities.

Since recently, Perf also provides support for Last Branch Record (LBR) [Intel 2013c]
registers on Intel processors. This feature enables automatic recording of the
last taken branches. Depending on the CPU version, LBR stores from 4 to 16
records [Intel 2013c], which is useful for call stack debugging, but too limited for event-
based tracing.

2.2.2. Linux. The Linux kernel provides basic CoreSight ETM support for OMAP3
chips. CoreSight ETM is a hardware facility to trace the sequence of executed instruc-
tions. It is detailed in section 3. Controling ETM is achieved via an entry in the sysfs
virtual filesystem, but only a limited subset of the options offered by ETM is avail-
able. For instance, it is neither possible to change the address range to trace, nor can a
specific context ID be followed (which however, ETM is capable of). Patches (including
ours) were proposed to add more functionality and support.

2.3. Other tracing hardware

Other hardware facilities exist on different architectures for program tracing. We
present here two common architectures offering interesting features.

2.3.1. Freescale. Freescale processors offer debug facilities compliant with the Nexus
standard [O’Keeffe 2000], in particular an on-chip trace buffer that can capture real-
time bus information [Freescale Semiconductor 2011a]. It can be configured to either
store data for specific memory accesses, or changes in the execution flow, which al-
lows program tracing. The triggering system is similar to CoreSight ETM, allowing to
start and stop trace upon combinations of conditions, such as address range match-
ing and opcode type. Another feature called Data Acquisition enables instrumented
software to write data directly in the debugging channel. Also, trace buffers have
enough capacity (typically 16 KiB) and bandwidth to trace events from all cores with-
out loss [Freescale Semiconductor 2011b].

The generated trace data can then be fetched by another machine via a JTAG inter-
face connector [IEEE-SA Standards Board 2010], stored in a dedicated buffer or sent
to main memory. Although trace can be collected by proprietary software, there is no

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:4 A. Vergé and M. Dagenais

public documentation available. A direct comparison was therefore not possible and it
was not included in our study.

2.3.2. Intel. Intel has designed a new execution tracing solution called Proces-
sor Trace (PT) [Intel 2013b]. It enhances and unites previous tracing implementa-
tions [Intel 2013a; Intel 2013c] in an optimized extension that is capable of times-
tamping, filtering, and tracking specific processes (via the CR3 register). The dedicated
hardware facilities also include caching buffers to store small traces without accessing
main memory [Reinders 2013], thus avoiding the BTS bus usage drawbacks.

Processor Trace is promising but not available on silicon at this time. Yet, Intel pro-
vides open-source libraries for generating and decoding traces [Reinders 2013]. Sup-
port in Linux is also planned through the Perf ABI [Shishkin 2013].

2.4. Existing use of CoreSight and BTS

The hardware facilities that we used in our study have existed for a few years. They
are already taken advantage of in existing tools, for various purposes.

2.4.1. Debugging. CoreSight provide debugging features such as hardware and soft-
ware breakpoints that can be used to stop a program or execute step by step. These
mechanisms are designed for multi-core processors, hence they are able to send stop
signals to other processors and act on a whole system. These features are used
by development environments [Texas Instruments 2011; ARM 2014], and software-
hardware co-debug platforms have been proposed [Lee et al. 2011; Su et al. 2011].

2.4.2. Security. Tracing infrastructures are also used for security. Scherer and
Horváth propose a watchdog solution to monitor the system on ARM-based platforms.
They use CoreSight debug and trace hardware blocks to make and record measure-
ments inside the system and estimate its healthiness [Scherer and Horváth 2012]. On
Intel x86 platforms, Branch Trace Store (BTS) can be used to detect security breaches.
By monitoring addresses of executed instructions to detect deviations, Yuan et al. pro-
pose system security enhancements. They rely on the BTS debugging registers to de-
tect abnormal control flows and identify unexpected code execution [Yuan et al. 2011].

2.4.3. Programming. Another use of execution tracing is to speed up develop-
ment processes by exposing execution information alongside the source code.
Tralfamadore [Lefebvre et al. 2009] is a system that displays execution trace analy-
sis in a source code browser. By using BTS, it helps developers to track the control flow
and write their programs more logically.

3. TEST ENVIRONMENTS

Our experiments were run on three specific platforms. However, the hardware modules
used for tracing are found in many other processors and systems-on-chip.

The platforms used were:

— an OMAP3530 system-on-chip with a ARM Cortex-A8 CPU and 512 MiB of LPDDR,
integrated onto a Beagleboard-xM development card;

— an OMAP4430 system-on-chip with a dual-core ARM Cortex-A9 and 1 GiB of
LPDDR2, integrated onto a Pandaboard development card;

— a desktop computer with an Intel Core i7-3770 processor (4 physical cores at 3,4 GHz)
and 6 GiB of DDR3 RAM.

The first two platforms integrate ARM CoreSight debugging components, whereas
the third one embeds Intel Branch Trace Store registers. These devices are presented
in the next subsections.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:5

Fig. 1. Overview of the CoreSight components used

CPU
ETM

STM

ETB

system bus

timestamping

system-on-chip

3.1. ARM CoreSight

ARM CoreSight [ARM 2006] is a set of hardware blocks that provide trace and debug
functionalities for complex systems-on-chip. There is a variety of trace sources and
collectors, allowing traces of different types to be timestamped and multiplexed in the
same output.

The only CoreSight components that we used are ETM, STM and ETB. Their inter-
action is summarized in figure 1.

3.1.1. CoreSight ETM. The Embedded Trace Macrocell (ETM) is an instruction and
data tracer. It enables reconstruction of program execution by recording jumps. When
activated, ETM watches the core’s internal buses to detect branches with low inter-
ference with execution. ETM timestamps branches with cycle-level precision, and sup-
ports output filtering and compressing.

3.1.2. CoreSight STM. The System Trace Macrocell (STM) records and timestamps
software events [Mijat 2010]. It allows real-time instrumentation of software by pro-
viding a memory area where software writes are converted to hardware messages.
These messages are automatically timestamped and assigned to the requested chan-
nel. The area is divided into several channels, which allows multiple programs to be
debugged at the same time.

The version we used is the TI STM, present on our development board. It is an earlier
version of STM, not designed by ARM but with very close capabilities and the same
output format [MIPI Alliance 2013]. In the rest of this article, we use the acronym
“STM” indifferently for both versions.

3.1.3. CoreSight ETB. The Embedded Trace Buffer (ETB) stores traces from different
sources in a single place. It collects streams output from the ETM and the STM, and
allows deferring the retrieval of traces, acting as a buffer.

3.2. Intel

3.2.1. BTS. The Branch Trace Store (BTS) [Intel 2013a] system stores every branch
taken during execution to a user-defined area in memory. The BTS registers are part
of Intel’s Model-Specific Registers (MSR), embedded in newer processors made by Intel
since the Pentium 4 [Intel 2013d].

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:6 A. Vergé and M. Dagenais

Fig. 2. Overview of Intel Branch Trace Store

CPU

BTS

RAM

x86 host

branch records

4015a8

7f2aac77e024

7f2aac77e012

40ef26

4015b0

4015b4

BTS allows to define a zone in main memory where the CPU will automatically store
entries when encountering a branch. Any deviation from the execution flow (that is, not
executing the next instruction) is saved in a 24-byte entry. BTS can throw an interrupt
when the buffer overflows a given threshold. The user is responsible for draining this
buffer to save tracing data. It can also be configured as a circular buffer, if only a
backtrace is needed.

Embedded systems specialists estimate the BTS overhead between 20% and
100% [Pedersen and Acampora 2012], partly because the CPU enters a specialized de-
bug mode associated with a 25 to 30 times slowdown [Soffa et al. 2011; Intel 2013a].

The BTS design is summarized in figure 2.

3.3. Measuring the overhead of tracing

The experiments presented here aim at lowering the tracing overhead, thus minimiz-
ing the impact on the traced processes execution. Different measurable side effects
can estimate this impact, for example the total elapsed execution time, extra system
calls, accesses to memory and page faults, as well as cache memory usage or energy
consumption. Among these, we selected the execution time as reference, since it is the
major criteria for developers in most cases. Moreover, most other effects (such as page
faults) also impact the execution time.

In the rest of this article, the term “overhead” will refer to the modification to traced
processes normal execution. To estimate the “overhead”, we will measure the execution
time difference associated with tracing. Depending on the experiment, this is obtained
via the time command or with the gettimeofday system call. To reduce variability and
influence of unrelated events, each test was run several times and over long execution
times (between one and hundreds of seconds). In the case of two programs running in
parallel (a trace producer and a trace consumer), only the traced program is timed. We
assume that with long execution times, both the producer and the consumer enter a
steady state, so that the producer’s execution time is relevant by itself.

4. USING SYSTEM TRACING HARDWARE

The main functionality of tracing systems is to provide tracepoints. When the execu-
tion of a program reaches a tracepoint, an event is recorded along with customizable
information such as timestamp or process ID.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:7

Modern tracers like LTTng, focused on performance, achieve a good efficiency with
low-overhead and precise tracepoints. However, pure-software methods still induce a
slowdown, mainly due to synchronization and timestamp computation (which may in-
volve a system call in the worst case).

4.1. System Trace Macrocell

4.1.1. Design. The STM module offers system tracing capability: writing to a specific
zone in memory generates timestamped messages, and stores them in a dedicated
buffer. This led us to design a tracing solution that takes advantage of these hardware
circuits. Instead of using the tracepoint function provided by the LTTng-UST library,
our prototype directly writes to the STM memory area. Similarly, the trace consumer
does not read from shared memory, but retrieves data from the ETB when needed.

The software part of recording tracepoints is lightened: timestamping is automati-
cally done via a hardware clock, as is transportation to the ETB for further fetching.
Synchronization between trace producers is guaranteed, as long as each process writes
to its own STM channel. There are hundreds of possible channels (the exact number
depends on the hardware implementation), so many programs can be traced at the
same time. Channel information is included in the generated output, to enable mes-
sage decoding and demultiplexing after retrieval from the ETB.

Our implementation results in two programs: a trace producer, i.e. a traced program
in which events occur; and a trace consumer, i.e. the program that will fetch raw hard-
ware data from the ETB, decode and store it. The ETB has a fixed size, for this reason,
the producer and the consumer must communicate to avoid overflow. They share a
common page in memory to communicate and synchronize with semaphores. In partic-
ular, they both update a counter that represents buffer usage. The system’s scheduler
is meant to keep a balance between trace production and trace consumption. However,
if the ETB becomes full, the producer stops and yields CPU time to the consumer to
empty it.

4.1.2. Results. We measured the performance difference between this approach and
the original LTTng-UST in two configurations, meant to be representative of either the
worst case, or a more realistic situation. In the first case, the tracing overhead is max-
imum: the benchmark process runs a loop that does only tracing. In the second case,
some arithmetic computation is executed in each iteration, to simulate a real program
behavior. In both cases, tracing at each iteration is done either by calling LTTng-UST’s
tracepoint, or by interacting with our library to use CoreSight STM. This is then com-
pared to the execution with no tracing at all. In the same manner, the trace consumer is
either LTTng’s session daemon, or our custom program to retrieve data from the ETB,
decode it and store it to disk. It is important to note that these results show intention-
ally high tracing overhead, because we want worst-case results. For real-life programs,
overhead is much lower, typically a few percent [Desnoyers and Dagenais 2006].

The benchmarks were run on a Pandaboard and showed that LTTng-UST’s tracing
time can be significantly reduced when using CoreSight STM and ETB. Here, we use
a simple tracepoint type with a 24-bit integer payload. Figure 3 presents the average
execution time of iterations when looping 10

7 times, with our test program recording a
tracepoint at each iteration. We show results for the untraced program (a simple loop
iterating a volatile variable), the same program traced with LTTng-UST, and then
traced using STM and ETB. If both case, the LTTng tracing delay is reduced by ap-
proximately 91% when using hardware-assisted tracing.

We then measured tracing performance with respect to tracepoint types, i.e. the tra-
cepoints payload length. We ran the same programs with a fixed number of iterations
(106) but with payload varying from 3 to 100 bytes. The results are shown in figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:8 A. Vergé and M. Dagenais

Fig. 3. Average execution time of programs traced with LTTng-UST, with hardware (STM + ETB), and
not traced. We present a program looping, first with only a tracepoint in each iteration, and then the same
program performing real calculation in each iteration.

0

5

10

15

20

25

30

35

40

45

only tracepoints computation + tracepoints

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

µ
s
)

no tracing

LTTng-UST

STM + ETB

Fig. 4. Average execution time of programs traced with LTTng-UST, with hardware (STM + ETB), and not
traced. We present tracepoints with different payload size.

0

5

10

15

20

25

0 20 40 60 80 100

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

µ
s
)

trace data size (B)

no tracing

LTTng-UST

STM + ETB

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:9

Using the STM and ETB hardware modules is efficient for small messages, but does
not scale well for payloads bigger than 60 bytes. These results highlight the time taken
by LTTng-UST to synchronize with the trace consumer with memory barriers, but also
its ability to take advantage of the cache when trace payloads get longer.

Since most tracepoints typically used with LTTng do not exceed a few bytes, using
CoreSight STM and ETB is a significant improvement to the low-intrusiveness of LT-
Tng. Moreover, the timestamping provided by CoreSight is cycle-precise, which is not
the case with LTTng on every platform.

5. USING EXECUTION PATH TRACING HARDWARE

Some hardware debugging components provide the ability to save the execution path,
i.e. the sequence of addresses for executed instructions. When timestamped, this infor-
mation is sufficient to trace the complete execution of a program, or a section thereof,
and constitutes a superset of the program location information conveyed by trace-
points. Nonetheless, tracing infrastructures like LTTng have the ability to associate
a payload, and even a context, with the tracepoints (for instance, the thread ID or
the number of encountered page faults), which is not available with hardware tracing
components. However, if this context information is not needed, and only the sequence
of reached tracepoints is of interest, software tracing can benefit from hardware assis-
tance.

5.1. Embedded Trace Macrocell

5.1.1. Design. The ETM hardware module performs execution path saving in a highly
compressed format, and without interfering with the traced program execution. More-
over, it can be enabled and disabled by triggers, including address matching and con-
text ID matching. This allows tracing a specific process, in a specific address range.
Moreover, the traced program does not need to be recompiled to be traced: only the
virtual addresses of its symbols must be known.

We chose to use ETM to trace the program when it enters the portion of code cor-
responding to the tracepoint. For instance, if we want the call to function foo to be
traced, we set up ETM to start when the program is at the address of foo, and stop at
the same address + 4. ETM is also configured to trigger only when the interesting pro-
cess is running. Due to hardware limitations, this design only allows one tracepoint,
with no payload. If several events need to be traced, a full execution trace or a mix of
pure-software and hardware tracepoints can be used.

We implemented this design with two programs: a trace producer, which represents
the traced program; and a trace consumer, whose role is to regularly drain the ETB and
save its contents to disk for further decoding. The trace producer enables the ETM by
communicating with the kernel, via an entry in sysfs. We patched the Linux kernel
to enable full configuration of the ETM, especially the address range selection and
context ID tracking [Vergé 2014]. This patch has been sent to the Linux Kernel Mailing
List. Once the ETM is activated, it is configured to trigger at the address of a simple
function that does an arithmetic computation. The test program, after activating the
ETM, enters a loop calling this function at each iteration. It is thus equivalent to the
other test cases studied.

5.1.2. Results. This implementation is compared to two others: the first one is the
same program but untraced; the second one has hardware tracing replaced by a call to
LTTng-UST’s tracepoint in each iteration (and the hardware trace consumer replaced
by LTTng’s session daemon). We evaluated the tracing time overhead by running these
on a Beagleboard. Figure 5 presents the execution time of our three benchmark pro-
grams in three different configurations: recording only tracepoints, performing some

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:10 A. Vergé and M. Dagenais

Fig. 5. Average execution time of programs traced with LTTng-UST, with hardware (ETM + ETB), and not
traced. We present programs that do a loop where each iteration performs either only tracing, or tracing
plus computation (with more time spent on computation in the third program).

0

5

10

15

20

25

30

35

40

45

50

only
tracepoints

computation
+ tracepoints

more computation
+ tracepoints

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

µ
s
)

E
V

E
N

T
 L

O
S

S

no tracing

LTTng-UST

ETM + ETB

extra computation in each iteration, and performing even more computation. Once
again, it is important to note that these results show the overhead in the worst-cases,
because our benchmark programs do almost nothing but recording tracepoints.

First, it is noticed that, for very high tracing frequencies, events are lost by the ETM.
However, this situation is infrequent: it happens when events occur more often that 105

times per second. Apart from cases with lost events, results show that using ETM and
ETB reduces the time overhead from 30% to 50% when compared to LTTng-UST. This
demonstrates the performance benefits of using dedicated hardware to trace a given
location in a program, in addition to the fact that there is no need to recompile the
traced program. However, this solution only provides the time (although cycle-precise)
when the program reaches a specific point, and no other information. Also, its most
significant drawback is that it only allows tracing a few points in the program (because
the number of available address triggers in ETM remains very limited). Configuring
the ETM to trace the whole program is possible, but every branch would be recorded
and a significant tracing overhead would be incurred.

5.2. Branch Trace Store

5.2.1. Design. The Branch Trace Store (BTS) registers, included in most newer x86
processors from Intel, allow saving every branch taken by the CPU to an area in main
memory. Each branch is stored as a couple (origin address, destination address). The
area starting address and size is user-definable, but cannot be configured to limit trac-
ing to a specific process or address range. BTS does not timestamp records either. For
these reasons, software has to spend more time for tracing control and synchroniza-
tion: enable or disable it on context switches (to trace only one process), separately
collect timestamps, and drain the buffer to save data to disk.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:11

With BTS, every branch of the program is stored. The advantage of this behavior is
that it provides much more information than the use of sparse tracepoints. Its draw-
back is a significant perturbation of the traced process execution, due to frequent mem-
ory accesses (to store branches) and related cache usage.

We wanted to know if the use of BTS, although known to have a significant perfor-
mance impact, could do better than pure-software tracing, which is also very intrusive
when used to trace the complete execution path. For this purpose, we designed test
programs meant to be traced either with LTTng, or using BTS. In order to have com-
parable results, we needed to devise programs that trigger BTS branching records only
where wanted, that is at the place where we would insert tracepoints. For this purpose,
our benchmark programs are just loops performing arithmetic computations (to simu-
late real software activity): at the end of each iteration, the looping branch is recorded.
The LTTng-traced version of these programs contains a tracepoint at the end of each
iteration. Finally, in order to measure the effect of tracepoints sparsity, we varied the
length of the loop computation. This changes the relative frequency of branches in the
program.

5.2.2. Re-implementing Perf. We modified the Linux kernel to handle BTS more effi-
ciently [Vergé 2013]. The default behavior (illustrated in figure 6) was to set up one
buffer per CPU, and to copy its whole content to a larger place in RAM every time a
buffer full interrupt or a context switch occurs. Then, the user-space tracing daemon
would copy the contents of this intermediate buffer to disk. The trace file being opened
without the O SYNC flag, writing to disk is not synchronized and data is possibly copied
once more to a temporary buffer.

To avoid the time-wasting multiple copies in RAM (especially the one performed
during the handling of an interrupt), we re-implemented this Linux kernel section to
use ring-buffers. BTS is then configured to store entries in a sub-buffer; when it is full,
BTS is reconfigured to use the next sub-buffer in the ring-buffer. This way, there is no
urgent need to copy the BTS data to make room: this data can be saved to disk later by
a kernel task. The size of the sub-buffers is the same as in Perf (64 KiB), their number
was chosen to allocate a bit less resources than Perf does in its default implementation,
that is 16 kernel-space pages plus 128 user-space pages per core (576 KiB per core for
original Perf, 512 KiB in our implementation). Because the trace data does not transit
through user-space before being stored, we use the term “splice” for our design. It is
illustrated in figure 7.

5.2.3. Results. We measured the overhead induced by tracing with LTTng-UST, with
BTS using the regular Perf interface, and with BTS using our modified kernel interface
(“splice”). The results for programs with various branching rates are shown in figure 8.
To give the reader an idea of the branching rates presented here, we measured as a
reference the rates for common programs: md5sum: 7.4× 10

6; sha256sum: 3.7× 10
7; gcc:

6.70× 10
8. These values, given in branches per second, were measured on the desktop

machine described in section 3.
First, this experiment once more shows that the tracing overhead highly depends on

the tracing frequency. Bars on the left show the overhead for programs that do nothing
but recording tracepoints. Secondly, we compare the different tracing solutions over-
head to LTTng, our reference tracer. The experiment reveals that using BTS through
the regular Perf interface incurs between 30% and 60% time overhead, when com-
pared to tracing with LTTng. This highlights the heavy bus usage and the double copy
done by the Branch Trace Store system in its original Linux implementation. How-
ever, when using our “splice” design (in a kernel patched to use ring-buffers and avoid
a double copy), BTS tracing performs much better than the original. It even overtakes
LTTng with an overhead reduced by 10% to 45%.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:12 A. Vergé and M. Dagenais

Fig. 6. Operation of Perf and BTS in the original implementation

core

0

64K

512K

core

1

64K

512K

core

6

64K

512K

core

7

64K

512K

disk

u
s
e
r-

s
p
a
c
e

system buffer

BTS writes trace

to a dedicated bu er

trace is copied to

a bigger memory zone

upon bu er full

or context switch

user stores trace to

disk using the write

system call

possible copy in

another bu er because

no O_SYNC flag

Fig. 7. Operation of Perf and BTS in our new “splice” implementation

core

0

core

1

core

6

core

7

disk

BTS writes trace

to a dedicated buffer

upon buffer full

or context switch,

move to the next

sub-buffer

filled sub-buffers

are labeled to be

written to disk later

64K

512K

es

writing is done

by a kernel task

in user context

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

Hardware-Assisted Software Event Tracing 39:13

Fig. 8. Time overhead of tracing when using LTTng-UST or Intel BTS hardware module, for programs with
events traced at various frequencies. BTS results are presented for the original Perf implementation, and
with our “splice” modification to avoid a multiple copies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3.2 x 10 6

3.7
x 10 6

4.4 x 10 6

5.5 x 10 6

7.6 x 10 6

1.1
x 10 7

2.4 x 10 7

2.1 x 10 8

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 (

µ
s
)

program branching rate (branch/s)

no tracing

LTTng-UST

BTS with Perf

BTS with "spliced" Perf

These results highlight the limits of Perf ’s handling of BTS: multiple copies induc-
ing a heavy bus usage that competes with the traced program’s execution. Our re-
implementation use ring-buffers to avoid multiple copies, resulting in a performance
enhancement that makes BTS lighter than LTTng. Still, BTS remains costly for a
hardware mechanism, due to a large trace volume (24 bytes per branch). The reader
should note that our benchmark is valid for programs that record tracepoints at each
branch, which is not often the case with higher level event tracing.

6. CONCLUSION AND FUTURE WORK

We have presented solutions to take advantage of various hardware debugging mod-
ules when doing software tracing, and compared their overhead to LTTng, a perfor-
mance oriented tracer for Linux. The hardware modules studied belonged to two cate-
gories: software writes timestampers and program tracers.

We used STM from the former category, to instrument programs without needing
to synchronize and compute a timestamp when recording a tracepoint. We showed a
10 times decrease in time overhead when tracing a user-space program on a Pand-
aboard. We then studied program tracers, i.e. hardware modules to record the flow of
executed instructions. These do not provide the same information as tracers do but
can be suited for tracing, depending on one’s needs. On ARM platforms, ETM offers
good efficiency because of its trace compression and triggering capabilities: tracing a
program takes 30% to 50% less time when hardware-assisted. On Intel x86, the BTS
registers are not adapted to event recording, mainly because they lack automatic en-
abling/disabling with address matching and trace compression. However, they can be
used for this purpose by tracing every branch. Using BTS for recording user-space tra-
cepoints on an Intel Core i7-3770 is 30% to 60% slower than using LTTng with the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

39:14 A. Vergé and M. Dagenais

standard implementation, whereas our kernel modification with ring-buffers performs
up to 45% faster.

The significant performance increase offered by some of our solutions, especially
STM, should lead to an integration into LTTng in the near future. We also plan to
extend this work to other interesting hardware features, including Freescale pro-
cessors (which provides a program tracing functionality), and Intel Processor Trace
(PT) [Reinders 2013], a new hardware tracing infrastructure that Intel will embed in
its future processors. Intel PT is promising because of its triggering and filtering capa-
bilities, similar to CoreSight ETM.

REFERENCES

ARM. 2006. CoreSight Components Technical Reference Manual. (2006). Available as
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H coresight components trm.pdf.

ARM. 2014. DS-5 Development Studio. (2014). Available as http://ds.arm.com/.

Tim Bird. 2009. Measuring function duration with ftrace. In Proc. of the Japan Linux Symposium.

Mathieu Desnoyers. 2009. Low-impact operating system tracing. Ph.D. Dissertation. École Polytechnique de
Montréal.

Mathieu Desnoyers and Michel R Dagenais. 2006. The LTTng tracer: A low impact performance and behav-
ior monitor for GNU/Linux. In OLS (Ottawa Linux Symposium). 209–224.

Mathieu Desnoyers and Michel R Dagenais. 2009. LTTng, Filling the Gap Between Kernel Instrumentation
and a Widely Usable Kernel Tracer. (2009).

Jake Edge. 2009. Perfcounters added to the mainline. (2009). Available as http://lwn.net/Articles/339361/.

EfficiOS. 2013. Common Trace Format (CTF) Specifications. (2013). Available as
http://git.efficios.com/?p=ctf.git;a=blob plain;f=common-trace-format-specification.txt.

Frank Ch Eigler and Red Hat. 2006. Problem solving with systemtap. In Proc. of the Ottawa Linux Sympo-
sium. 261–268.

Freescale Semiconductor. 2011a. Application Note AN4420: Linux Kernel Program Tracing using Nexus.
(2011). Available on Freescale website.

Freescale Semiconductor. 2011b. Debug Facilities. In EREF 2.0: A Programmer’s Reference Manual for
Freescale Power Architecture R© Processors. Chapter 9, 787–803. Available on Freescale website.

Sudhanshu Goswami. 2005. An introduction to KProbes. (2005). Available as http://lwn.net/Articles/132196/.

IEEE-SA Standards Board. 2010. IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access
Port and Boundary-Scan Architecture. Technical Report. IEEE Computer Society.

Intel. 2013a. Branch Trace Store (BTS). In Intel R© 64 and IA-32 Architectures Software Developer’s Manual.
Vol. 3B. Chapter 17.4.5, 2411.

Intel. 2013b. Intel R© Processor Trace. In Intel R© Architecture Instruction Set Extensions Programming Ref-
erence. Chapter 11, 893.

Intel. 2013c. LBR Stack. In Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Vol. 3B. Chap-
ter 17.4.8, 2412.

Intel. 2013d. Table B-2. IA-32 Architectural MSRs. In Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual. Vol. 3B. Chapter Appendix B.

Jim Keniston and Srikar Dronamraju. 2009. Uprobes: User space probes. Linux Foundation Collaboration
Summit (2009).

Kuen-Jong Lee, A Su, Long-Feng Chen, Jia-Wei Jhou, J Kuo, and M Liu. 2011. A software/hardware co-
debug platform for multi-core systems. In ASIC (ASICON), 2011 IEEE 9th International Conference on.
IEEE, 259–262.

Geoffrey Lefebvre, Brendan Cully, Michael J Feeley, Norman C Hutchinson, and Andrew Warfield. 2009.
Tralfamadore: unifying source code and execution experience. In Proceedings of the 4th ACM European
conference on Computer systems. ACM, 199–204.

LTTng team. 2009. TMF (Tracing and Monitoring Framework). (2009). Available as http://lttng.org/eclipse.

Paul E McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger, Rusty Russell, Dipankar Sarma, and
Maneesh Soni. 2001. Read-copy update. In AUUG Conference Proceedings. AUUG, Inc., 175.

Roberto Mijat. 2010. Better Trace for Better Software. Technical Report. ARM. Available as
http://www.arm.com/files/pdf/Better Trace for Better Software - CoreSight STM with LTTng - 19th October 2010.pdf.

MIPI Alliance. 2013. Specification for System Trace Protocol (STP). (2013).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_coresight_components_trm.pdf
http://ds.arm.com/
http://lwn.net/Articles/339361/
http://git.efficios.com/?p=ctf.git;a=blob_plain;f=common-trace-format-specification.txt
http://lwn.net/Articles/132196/
http://lttng.org/eclipse
http://www.arm.com/files/pdf/Better_Trace_for_Better_Software_-_CoreSight_STM_with_LTTng_-_19th_October_2010.pdf

Hardware-Assisted Software Event Tracing 39:15

Hugh O’Keeffe. 2000. IEEE-ISTO 5001TM-1999, The Nexus 5001 ForumTM Standard providing the Gateway
to the Embedded Systems of the Future. Technical Report. Ashling Microsystems Ltd.

Pradeep Padala. 2002. Playing with ptrace, part I. Linux Journal 2002, 103 (2002), 5.

Craig Pedersen and Jeff Acampora. 2012. Intel Code Execution Trace Resources. In Intel R© Technology Jour-
nal. Vol. 16. 130–136.

James Reinders. 2013. Intel Processor Tracing. (2013). Available as
http://software.intel.com/en-us/blogs/2013/09/18/processor-tracing.

Balázs Scherer and Gábor Horváth. 2012. Trace and debug port based watchdog processor. In Instrumenta-
tion and Measurement Technology Conference (I2MTC), 2012 IEEE International. IEEE, 488–491.

Alexander Shishkin. 2013. perf: Add support for Intel Processor Trace. (2013). Available as
http://lwn.net/Articles/576551/.

Mary Lou Soffa, Kristen R Walcott, and Jason Mars. 2011. Exploiting hardware advances for software test-
ing and debugging (nier track). In Proceedings of the 33rd International Conference on Software Engi-
neering. ACM, 888–891.

Alan P Su, Jiff Kuo, Kuen-Jong Lee, Jer Huang, Guo-An Jian, Cheng-An Chien, Jiun-In Guo, and Chien-
Hung Chen. 2011. Multi-core software/hardware co-debug platform with ARM CoreSightTM, on-chip
test architecture and AXI/AHB bus monitor. In VLSI Design, Automation and Test (VLSI-DAT), 2011
International Symposium on. IEEE, 1–6.

Texas Instruments. 2011. Code Composer Studio IDE. (2011). Available as http://www.ti.com/tool/ccstudio.

Adrien Vergé. 2013. perf: Intel BTS: Add ”splice” output mode. (2013). Available as
https://github.com/adrienverge/linux/tree/patch perf bts splice.

Adrien Vergé. 2014. ARM CoreSight: ETM: Fix a vmalloc/vfree failure and enhance tracing control. (2014).
Available as https://github.com/adrienverge/linux/tree/patch etm v3.

Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. 2011. Security breaches as PMU deviation: de-
tecting and identifying security attacks using performance counters. In Proceedings of the Second Asia-
Pacific Workshop on Systems. ACM, 6.

Received March 2014; revised May 2014; accepted June 2014

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 39, Publication date: March 2014.

http://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
http://lwn.net/Articles/576551/
http://www.ti.com/tool/ccstudio
https://github.com/adrienverge/linux/tree/patch_perf_bts_splice
https://github.com/adrienverge/linux/tree/patch_etm_v3

	Introduction
	Related work
	Software tracing
	Ptrace
	Ftrace
	SystemTap
	LTTng

	Hardware-assisted tracing
	Perf
	Linux

	Other tracing hardware
	Freescale
	Intel

	Existing use of CoreSight and BTS
	Debugging
	Security
	Programming

	Test environments
	ARM CoreSight
	CoreSight ETM
	CoreSight STM
	CoreSight ETB

	Intel
	BTS

	Measuring the overhead of tracing

	Using system tracing hardware
	System Trace Macrocell
	Design
	Results

	Using execution path tracing hardware
	Embedded Trace Macrocell
	Design
	Results

	Branch Trace Store
	Design
	Re-implementing Perf
	Results

	Conclusion and future work

